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Abstract. Two infinite, parallel, uncharged conducting planes experience an attractive force between them (called the
Casimir force) due to the alteration of the zero point electromagnetic field between the plates.  Similarly, there are
forces on the surfaces of a rectangular cavity with conductive walls of dimension a1, a2, a3.  Recently a paradox was
published describing a method for the extraction of mechanical energy from the zero point fluctuations of the
electromagnetic field in a rectangular conductive cavity by cyclical changes in the dimensions of the walls without
doing any work (Forward, 1998).  The validity of the analysis depends on the implicit assumption that the energy
density within the cavity is approximately isotropic, so that positive average energy densities within the cavity result in
outward forces, and negative average energy densities result in attractive forces.  However, detailed computations of the
forces on the cavity walls show this assumption is not valid, and that there are positive energy regions in which there
are outward forces on some faces and inward forces on other faces (Hacyan, 1993).  Specifically, for a cavity with a1 =
a2 = 1 the energy is positive for 0.4<a3<3.3, however, the average pressure P1 on the 1 x 1 faces and the average
pressure P3 on the 1 x a3 faces are both positive only if 0.7<a3<1.6.  For all other values of a3, P1 and P3 have opposite
signs.  Specifically, for a3>1.6, P3>0, P1<0 and for a3<0.7, P3<0, P1>0. The implications of these and other unusual
features of rectangular cavities in the vacuum are discussed.

INTRODUCTION

Quantum Electrodynamics predicts a non-zero expectation value for the energy of every mode of the
electromagnetic field, even when no charges are present. The presence of conductive surfaces alters the boundary
conditions that the source free fluctuating electromagnetic field must meet.  The boundary conditions determine the
modes of the vacuum field that are present, and hence the electromagnetic energy and momentum density.  The
vacuum forces result because the energy and momentum density are altered from the free field values.

At submicron separations, the fluctuations in the ground state of the quantized electromagnetic field lead to
significant forces between components of a microsystem.  For example, at a separation of 100 A, the predicted
Casimir force between two perfectly conducting parallel metal plates in a vacuum is equivalent to 1 atmosphere
pressure.  A recent measurement gave forces to with 5% of Casimir's predictions (Lamoroux, 1997).  Casimir
forces have also been observed between dielectrics (Israelachvili, 1972).  Using Casimir forces to extract energy
from the vacuum is possible from both the experimental and theoretical viewpoints (Forward, 1984; Cole, 1993). 
It is expected that the total energy of the system (including the surface energy) is conserved in this process.

In order to understand the meaning of the force computations for cavities, we need to clarify the methods used.  

 The Casimir energy for a particular  geometry, e.g. a cavity or parallel plates, is obtained as the difference between
the vacuum energy Eo with no surfaces present (or the surfaces at infinity) and the vacuum energy Es with the
surfaces present (Plunien, 1986).  Because modes with arbitrarily short wavelengths are present,  both Eo and Es

are divergent quantities, however the difference Es - Eo = Ec is the finite Casimir energy.

To secure a finite Casimir energy Ec, either the contributions of the poles cancel (Brown, 1969) or various methods
are used to deal with the infinite quantities, including wavelengths cut-offs, regularization of poles (Ambjorn,
1983), or the extraction of poles by use of Fourier transforms (Hacyan, 1993).  Physically, the presence of surfaces
changes the type and number of modes of the vacuum electromagnetic field present in the system.  In general the



surfaces will tend to eliminate EM modes with wavelengths that are longer that the characteristic separations
between opposing surfaces.  For real conducting surfaces there is a further limitation: the surfaces will not be
effective boundary conditions for wavelengths corresponding to frequencies which are above the plasma frequency
of the metal. In any case, the higher frequency modes with frequencies above the plasma frequency, or with
wavelengths much less than the characteristic separation between the surfaces, are not affected by the surfaces.  It
is these higher energy modes that give the divergent energies (or very large energies if a cut off, such as the Planck
length or the Compton radius of the electron is used). Thus surfaces do not eliminate the high frequency
divergences in energy seen in quantum electrodynamics.  Casimir energies result from the changes in the lower
frequency modes due to the presence of conducting surfaces altering the boundary conditions for the
electromagnetic field.

Rigorous computations of the changes in the ground state vacuum energy density that are produced with different
geometries have shed some light on the interpretation of the vacuum energy density and the Casimir force.  Often
the explanation for the attractive force between two perfectly conducting, parallel plates is that the energy density
between the plates is less than the "free field" energy density outside the plates because wavelengths longer than
twice the plate separation are excluded.  Therefore, the plates attract each other because movement toward each
other would reduce the free energy of the system.

Detailed QED calculations have shown that this intuitive model of the force due to vacuum fluctuations is probably
misleading in its simplicity (Plunien, 1986).  For example, excluding modes does not always lead to reduced
energy density.  In the case of a cube, the energy density increases as the side is reduced.  For a rectangular cavity,
there are configurations with negative average energy in which some walls have positive (outward) forces while
other walls have negative (inward) forces.  Rigorous field theoretic computations predict that both the magnitude
and direction of the force due to the ground state of the electromagnetic field are strongly dependent on the specific
geometry, and the force is repulsive in several cases.

Table 1 shows the variation in magnitude and sign of the energy density Ec for several simple geometries.  The
forces on the surfaces of these geometries are usually obtained by differentiating the energy densities according to
the principle of virtual work:

    d E F d ac = −              ,          (1)

where F is the force in the "a" direction due to the zero point field.  This computation of force tacitly assumes that
the energy density is isotropic, so that the pressure is uniform over the surfaces in question.  Because of the
symmetric nature of these geometries this assumption appears valid for these cases, however, for rectangular
cavities in which the sides are finite and not equal, the assumption of isotropic energy density is incorrect.  Forces
are best computed by using a more fundamental formulation, for example, by computing all components of the
stress-energy tensor and integrating over surfaces (Brown, 1969; Hacyan, 1993). In the few cases for which
independent computations are available, it appears that it is also possible to compute forces correctly by
differentiating Eac, the Casimir energy per unit area, where the area is on a surface normal to the displacement.
The force/area or pressure Px in the x direction equals the partial derivative of the Eac

P E xx a c= − ∂ ∂/           .        (2)

This formula must be applied with caution.  For example, for a rectangular cavity, when the energy Ec is zero, the
derivative is not zero.

TABLE 1.  Change in Vacuum Energy Density Ec for Different Perfectly Conductive Geometries

Parallel Plate (spacing =a) Cube (side=a) Sphere (radius=r)

-0.0137hc/2π a4   +0.092hc/2π a4 +0.01 07hc/2π r4



CASIMIR ENERGY DENSITIES AND FORCES IN RECTANGULAR CAVITIES

Although the results in Table 1 have been calculated by a variety of methods, we have very little real understanding
about the role of geometry in determining the vacuum stresses.  The lack of understanding is underscored by the
unusual behavior of the energy density in a parallelopiped.

As the relative dimensions change from a cube into the usual parallel plate geometry, the average energy density
changes from positive to negative.   Figure 1 shows a contour plot of the electromagnetic average Casimir energy
density Ec/V for a perfectly conducting box with sides a1 x a2 x a3 computed by (Ambjorn, 1983). The figure shows
lines of constant average energy as a function of the ratio of the sides a2/a1 and a3/a1.  In the region with a1 = a2 =
a3 (near the origin) the average energy density is positive and a maximum for the cubic box.  When one dimension,
e.g. a2, becomes equal to about 3.3a1 (a2/a1=3.3), then the average energy density Ec/V is zero, meaning it is the
same as the free field energy density with no boundaries. The zero energy line is shown as a thick curve.  The
parallel plate Casimir force as computed by Casimir corresponds to the asymptotic case where both a3/a1 and a2/a1

are very large, and the energy density is negative.

The forces on different faces of a rectangular 1 x 1 x C cavity have been computed (Hacyan, 1993).  Figure 2 shows
the Casimir energy E, average energy density E/V, the average pressure P3 /on the 1 x 1 face, and the average
pressure P1 on the 1 x C faces, all as functions of the dimension C (Hacyan, 1993). On this figure, consider the
point  corresponding to a cube with unit sides (C=1). The pressure P1 = P3 is the same on all faces by symmetry,
and by calculation it is positive or outward.

Assume we let one side of the cube expand so one square face moves away from the opposite square face a distance
C.  Work will be done by the Casimir energy in the cavity since the pressure P3 on this face is outward and almost
a constant for this experiment.  As C is increased, the pressure P1 on the face with side 1 x C decreases and
becomes negative or attractive at about C = 1.7.  P1 becomes more negative as C continues to increase. If we let this
side continue to increase in length until it is about 3.3 times the other dimensions, the total energy in the cube has
reduced to zero, the same result as given by (Ambjorn, 1983). Since this strange 1 x 1 x 3.3 cube has zero total

FIGURE 1. Constant energy curves are shown for a perfectly conducting rectangular cavity a x a x a. 
The thick line is a zero energy curve. (Forward, 1998)



FIGURE 2.  For a perfectly conducting rectangular 1 x 1 x C cavity, the graph shows the Casimir energy E,
average energy E/V, the average pressure P1 on the 1 x C faces, the average pressure P3 on the 1 x 1 faces.
(Hacyan, 1993).

energy, and zero average energy density, one might think that the forces on the walls would be zero. However, they
are not zero because the derivative of the energy per unit area with respect to the displacement of the sides is not
zero.

For this zero energy configuration of a bread box 1 x 1 x 3.3, Figure 2 shows that the pressure P3 on the 1 x 1 side
that moved still remains positive, but the pressure P1 on all the 1 x 3.3 sides has become negative, or attractive. 
This suggests that the total energy is zero because we have sides with positive or outward pressures as well as sides
with negative or inward pressures. Thus the work to assemble such a cavity would have positive contributions that
cancel the negative contributions.

Indeed, imagine if we were to expand the other sides of the 1 x 1 x 3.3 box so that a cube of 3.3 on a side results. 
This process would have to increase the energy since we know it is positive for a cube, with positive forces on all
faces.  To reach this final configuration the forces on the 1 x C sides, which are initially negative, must change
sign as we approach the geometry of a cube.  Conversely, as Figure 2 shows, if we start with the unit cube 1 x 1 x 1
and decrease C, we find that P3 decreases to zero at about C = 0.7, where dE/dC vanishes, and becomes negative,
while P1 increases rapidly.

In effect the energy density is not isotropic and the derivative of the energy density is not isotropic, as we usually
assume it is.  Thus we cannot conclude that the force on a cavity with a positive average energy density is
necessarily outward or positive.



FORWARD'S PROPOSED CASIMIR ENERGY EXTRACTION CYCLE: RESOLUTION
OF THE PARADOX

(Forward, 1998; 1997) proposed to extract energy by starting with a cavity with an initial state (a2/a1,a3/a1) = (1,
3.3), which is on the zero energy curve of Figure 1.  Presumably the force on the walls is zero since the average
energy density is zero.  Then a3/a1 is held constant while a2/a1 is increased quasistatically, giving a positive energy
density.  If we assume the energy density is isotropic (which is not correct), then the side would experience an
outward force, and expand quasistatically, doing work, until a2/a1 reached the zero energy curve at a2/a1 = 1.8.  If
we assume isotropic energy density (which is not correct), then the force would be zero at this point and the
expansion would end.  The system is then returned to its initial state by moving along the zero energy line. 
(Forward, 1998) states that no work is done when moving the state of the system along the zero energy line since
the force on each face is zero during this final transformation.  Although the forces are not zero because the energy
density is not isotropic, the conclusion, that no energy is used, is correct since there is no net change in energy
during this transformation, and no net work is done.  Thus in the proposed cycle, based on the assumptions made,
energy is extracted from the vacuum and no net work is done.  However, because of the incorrect assumptions, net
work is actually done when extracting energy from the vacuum and energy is conserved as expected.

In the first part of the cycle described by (Forward, 1998) , one of the unit dimensions in a 1 x 1 x 3.3 cavity is
increased to about 1.8.  By the calculations shown in Figure 2 (Hacyan, 1993), initially the pressure on this side is
negative in spite of the fact that the total energy density is positive (C = 3.3, P1 < 0).  Thus work is being done to
increase this dimension.  The calculations have not been done to show how this force changes as the displacement
increases.  But it is probable that by the time the endpoint of 1.85 is reached, and a 1 x 3.3 x 1.85 cavity is
obtained, the sign of the force has probably changed, so that the net work to go from a2/a1 =1 to a2/a1 = 1.85 will be
zero.   On the return along the zero energy curve, there will be no net work done.  This is consistent with the
observation that the pressure P3 on the 1 x 1.8 face changes sign as we go along the zero energy curve from a2/a1 =
1.85 to a2/a1 = 1.  P3 changes sign when the derivative of the energy with respect to a3/a1 vanishes, which is at
about a2/a1 = 1.7.  Until additional calculations are done, we do not know precisely how the energy and force
change during the first expansion when a2/a1 increases from 1 to 1.85 while a3/a1 remains constant. We have
considered other cycles for which computations are available, and all showed that the energy extracted from the
vacuum equaled the work done.

OSCILLATIONS OF WALLS IN RECTANGULAR CAVITIES AND
OTHER PHENOMENA

There are a number of unusual properties of rectangular cavities in addition to those already discussed.  The force
on C for the 1 x 1 x C cavity is approximately constant for C>1.  If we vary C periodically about C=1.8 in a
quasistatic manner (see Figure 2), no net work is done.  At C=1.8, the pressure P1 on the other faces is zero.  As C
is increased, the pressure P1 will become negative or attractive. Causing the opposing 1 x 1.8 walls to approach
each other.  Conversely, as C is decreased, the pressure P1 will become positive, causing the wall to tend to move
apart.  Thus the periodic motion of C (causing the 1 x 1 faces to oscillate) will result in a periodic variation in the
pressure P1 on the four 1 x 1.8 faces.  The cavity tends to act as if it held a fluid.

This phenomenon indicates a high degree of coupling of modes in orthogonal directions.  This interesting motion
suggests that we may be organizing the random fluctuation of the EM field in such a way that changes in pressure
directly result, which could lead to work being done.  One interesting question is can we design a cavity that will
just oscillate by itself in the vacuum.  One approach to this would require a set of cavity dimensions such that the
force on a particular side is zero, but if the side is moved inward, a restoring force would be created that would
tend to push it outward, and vice versa.  Hence a condition for oscillation would be obtained.  Ideally, one would
try to choose a mechanical resonance condition that would match the vacuum force resonance frequency. More
complex patterns of oscillation might also be possible. The cavity resonator might be used to convert vacuum
fluctuation energy into kinetic energy or thermal energy. More calculations of forces within cavities are needed to
determine if this is possible, what would be a suitable geometry and how the energy balance would be obtained.

Only a few geometries have been examined with regard to the Casimir energy densities and forces.  We are at the
infancy of our understanding of such systems.  Geometrical structures might be used as mechanical systems in
themselves or to prepare atomic beams by passing atoms through regions in which the vacuum energy has been
purposely altered, for example, to control spontaneous emission, or alter energy levels. There is evidence that the
index of refraction is different from 1 in regions in which the Casimir energy is non-zero (Barton, 1997; Maclay,



1978).  Biological structures may also interact with the vacuum field.   It seems possible that cells, and components
of cells, for example, the endoplasmic reticulum may interact with the vacuum field in specific ways.  A cell
membrane, with a controllable ionic permeability, might change shape in such a way that vacuum energy is
transferred.  Microtubules, in cell cytoskeletons, may have certain specific properties with regard to the vacuum
field.  Diatoms, with their ornate geometrical structures, must create interesting vacuum field densities; one
wonders if there is a function for such fields.

CONCLUSIONS

Consideration of the details of the vacuum forces exerted on perfectly conducting rectangular cavities has revealed
some unexpected results, for example, that an average positive (negative) energy density in the cavity does not
necessarily mean the forces are outward (inward).  This property has been used to resolve the paradox of extracting
energy from the vacuum without doing any work.  It is clear that there are very interesting features in these cavities
that we do not understand, but that may prove useful in engineered devices and systems.  Study of this system
makes us realize how little we do understand in general of the behavior of vacuum fluctuations in regions where
there are complex surfaces and what rich physics awaits us.
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