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Analysis of zero-point electromagnetic energy and Casimir forces
in conducting rectangular cavities
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Quantum Fields LLC, 20876 Wildflower Lane, Richland Center, Wisconsin 53581

~Received 16 September 1999; published 17 April 2000!

The goal in this effort is twofold:~1! to develop an understanding of Casimir forces in geometries more
complicated than the usual parallel-plate geometry and~2! to provide extensive numerical computations to
elucidate quantitative and qualitative aspects of the vacuum fluctuation energy and Casimir forces for the
rectangular cavity. We review geometries for which Casimir forces and vacuum energy have been computed,
and point out some of the difficulties with the ideal-conductor boundary conditions and ideal-shape boundary
conditions, e.g., infinitely sharp edges. We investigate the vacuum electromagnetic stress-energy tensor at 0 K
for a perfectly conducting three-dimensional rectangular cavity with sidesa13a23a3. The elements of the
tensor are averaged over the appropriate spatial coordinates of the cavity. We first consider the average energy
densityT005e(a)/V from the viewpoint of symmetry, wheree(a1 ,a2 ,a3)5e(a) is the finite change in the
zero-point energy from the free-field case. The vacuum energye(a) and the total vacuum force on the wall
normal to thei direction,Fi52]e/]ai , are both homogeneous functions of the cavity dimensions. Because of
this symmetry, the energy and forces are related by the equatione(a)5a•F(a). We compute the vacuum
forces and energy numerically for cavities with a broad range of dimensions. The implications of the perfect-
conductor boundary conditions and the effects of the edges of the cavity are both considered. TheC3v

symmetry of the constant-energy surfaces is apparent. The zero-energy surface, which is invariant under
dilations and therefore extends to infinity, separates the nested, concave, positive-energy surfaces from the
open, negative-energy surfaces. The positive-~negative-! energy surfaces are mapped into each other by scale
changes. The forceF(a) is normal to the constant-energy surface ata. The surfaces corresponding to zero
forces, F i(a)50, are invariant under dilations and are therefore infinite. The zero-energy surface and the
zero-force surfaces delineate the different geometries for which there are zero, one, or two negative~inward or
attractive! forces on the cavity walls, along with the sign of the corresponding energy. There is no rectangular
cavity geometry for which all forces are negative or zero; conversely, only geometries that are not too different
from a cube have all positive~outward or repulsive! forces. Only for the last case is the energye(a) necessarily
positive. To provide an intuitive feeling for these vacuum energies, comparisons are made to other forms of
energy in small cavities. We consider the energy balance for changes in cavity dimensions.

PACS number~s!: 12.20.2m, 42.50.Lc, 03.70.1k
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I. INTRODUCTION

Casimir predicted the existence of an attractive force
tween two infinite parallel uncharged perfectly conducti
plates in vacuum over 50 years ago@1#. This force arises
because of the boundary conditions that the quanti
source-free electromagnetic field must meet at the metal
faces@2#. The prediction came very shortly after Bethe@3#
and Welton@4# explained the Lamb shift in the hydroge
atom as due to interaction of the electron with the quanti
vacuum electromagnetic field. The Casimir force was
startling and unexpected mesoscopic phenomenon ar
from the presence of surfaces in the quantized vacuum fi
The force was predicted to vary as the inverse fourth po
of the separation between the plates. At a separation of
nm the predicted force/area was equivalent to about 124

atm; at 10 nm it was about 1 atm. The Casimir force has a
been computed using the alternative language of so
theory and radiative reaction, without explicit reference
vacuum fluctuations@5,6#.

*The web address of Quantum Fields LLC is www.quantumfie
s.com. Electronic address: jordanmaclay@quantumfields.com
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Since Sparnaay’s first attempts in 1959, various meas
ments have been made on dielectrics@7# that have generally
verified the theory of Casimir forces as developed for diel
trics @8#, but not until quite recently was the existence of th
attractive Casimir force between metallized surfaces verifi
in two separate experiments. Lamoroux@9# used a torsion
pendulum with an electromechanical feedback system
measure the Casimir force between a metallized sphe
lens and a flat plate to an accuracy of about 5–10 %
separations of about 0.6–6mm. Mohideen and Roy@10#
used an atomic force microscope~AFM! to measure the
force between a metallized optical flat and a metallized b
mounted on the AFM cantilever, obtaining a precision
about 1% for separations of 0.1–0.9mm. As measured by
the AFM, the forces on an effective area of approximately
mm2 were in the piconewton range. Mohideen and Roy@10#
included corrections for the surface roughness, the pla
frequency of the material, finite temperature, finite size a
curvature of the surfaces, and instrumental effects.

With the advent of improved methods of making micro
and submicron structures, such as microfabrication tech
ogy, it has become possible to explore forces arising fr
quantum fluctuations in greater detail. For example, the c
tilever used by Mohideen and Roy@10# is a silicon micro-

-
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TABLE I. Change in vacuum energy at 0 K for different perfectly conductive geometries~only cutoff-
independent, geometry-dependent terms are included!.

Parallel plate Cylinder
~spacinga, infinite plates, Cube Sphere ~radiusr, infinitely long,
energy in an areaL3L) ~sidea) ~radiusr ) energy in lengthL

20.0137\cL2/a3 10.0916\c/a 10.0923\c/2r 20.0156\cL/r 2
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machined device, often called a MEMS device~microelec-
tromechanical system!. The small separation betwee
neighboring surfaces in various MEMS devices means i
possible that the presence of Casimir forces may resu
adjacent surfaces being attracted to or sticking to each o
@11#. Using micromachining methods, a variety of MEM
structures in which vacuum stresses are present can be
ricated. A harmonic oscillator with a Casimir interaction h
been modeled but not yet built@12#. Some structures, includ
ing cavities, can be built to investigate Casimir forces es
cially using AFM methods@13#.

Most of the discussions of the Casimir forces are giv
for the perfectly conducting, infinite-parallel-plate geomet
which is a very special and symmetric geometry. It conta
no curved surfaces, such as right angles, and it retains
entz invariance in two of the three spatial directions@14#. It
is common to explain the attractive Casimir force for th
geometry: ‘‘Since the plates exclude vacuum radiat
modes with wavelengths longer than twice the spacing,
energy density within the cavity is less than the energy d
sity outside the plates. Hence the force is attractive.’’ T
this explanation is simplistic is clear when we consider t
cubical or spherical cavities, which also exclude cert
modes, have a positive energy density and positive~outward!
forces~see Table I!. In rectangular cavities, the energy de
sity may be positive, negative, or zero depending on the r
of the sides, while the forces may be outward, inward,
even zero. Forces depend on the derivative of the ene
with respect to the corresponding direction, not on the s
of the energy density. If we examine the infinite-parall
plate geometry more fully, and imagine placing perfec
conductive metal surfaces normal to the parallel plates
order to enclose the volume between the plates, then t
would be outward forces on these additional four infinite
long, narrow surfaces@15#.

Geometries with curved surfaces or intersecting pla
present special problems with respect to vacuum ene
@16,17#, which we mention briefly since these issues ha
received little attention in the literature. Curved surfaces a
the local density of modes and the vacuum energy in
region near the surface. In general, the change in mode
sity from the free-field case that occurs very near a surf
varies as the inverse of the radius of curvature@17#. This is a
significant observation since it shows that conductive s
faces can yield a mode density greater than~as well as less
than! that for the free field and it may provide some exp
nation for the appearance of positive as well as nega
energy densities. For gently curved conductors, Deutsch
Candelas@16# have shown that the stress-energy tenso
approximately proportional to the sum of the reciprocals
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the two principal radii of curvature and varies inversely
the cube of the distance to the surface. It follows that
total vacuum energy in any compact region that contains
of the ideal curved conducting surface is infinite. For tw
perfectly conducting intersecting planes, Dowker a
Kennedy @18# showed that the renormalized stress-ene
tensor depends on the intersection angle and varies as
inverse fourth power of the distance from the intersect
line. Again, it follows that any compact region containin
part of the line of intersection contains an infinite~negative!
vacuum energy contribution.

Lukosz @19# has computed the change in the vacuum
ergy due to the infinitely sharp edges of a perfectly condu
ing rectangular cavity. He finds a quadratically diverge
term proportional to the perimeter of the cavity. For t
physically relevant case of a finite radius of curvatureR
!a1 ,a2 ,a3, the divergence vanishes and he obtains a c
rection to the total energy equal todE5A\c(a11a2

1a3)/R2, whereA is a constant of proportionality, which h
does not compute, but notes it may be zero. The effect of
additional termdE, which depends on the radius of curv
ture, will be discussed.

The infinities that appear for ideal conductors represen
breakdown of the perfect-conductor approximation. T
ether cannot store an infinite amount of energy~whether
positive or negative! in a compact region, nor can the con
ductor support the infinite stresses. The perfect-condu
boundary conditions are pathological, and lead to an infin
physically observable gravitational field@14,16#. For a real
metal the edges are not infinitely sharp, and the electrons
unable to follow an applied electromagnetic field at freque
cies above the plasma frequency of the metal. Thus, for
quencies above the plasma frequency, the zero-point ele
magnetic field is not effectively altered by the presence
the conductive plates and the boundary conditions for
ideal conductor are not met.

When a wavelength cutoff corresponding to finite plas
frequency is included, then the infinities in the stress-ene
tensor disappear. However, the question then arises whe
the use of a cutoff produces terms in the vacuum energy
depend on the molecular properties through the plasma
quency, and further, whether these terms depend on the
ometry or not. To date, only the sphere has been analyze
detail, with the result that a geometry-independent, cuto
dependent term has been found@20#. Since this term is ge-
ometry independent, it will not affect the computation of t
vacuum stress from the vacuum energy.

Lifshitz @8# has developed a general theory of Casim
forces in terms of a frequency-dependent complex permit
0-2
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ANALYSIS OF ZERO-POINT ELECTROMAGNETIC . . . PHYSICAL REVIEW A 61 052110
ity that can be applied to imperfect conductors or dielectr
For metals such as aluminum, copper, or silver, the fi
order theory predicts a reduction in the ideal perfe
conductor Casimir force of approximately 10% if the spac
is greater than the wavelength corresponding to the pla
frequency@21#.

The total Casimir force on a surface cannot be accura
obtained by adding differential contributions from differe
regions of the surface. Instead, the geometry as a whole m
be considered because it determines the modes of
vacuum electromagnetic field fluctuations that are pres
within the geometry@22#. The different modes determine th
energy within the cavity and the derivative of the ener
determines the force.

Vacuum energy and Casimir forces have been compu
for several simple symmetric geometries aside from
parallel-plate geometry, as shown in Table I. For a condu
ing spherical shell@23,24# and a conducting hollow cub
@25# the predicted Casimir forces are repulsive or outwa
The vacuum stress on two intersecting planes is attrac
For conductive rectangular cavities with square cross sec
1313c), the Casimir energy and the forces on the cav
walls have been computed@25–27#, with the result that the
forces can be inward or outward depending on the spe
dimensions. For example, the energy is positive in the in
val @28#

0.408,c/a,3.48

and zero at the endpoint of this interval, and negative outs
the interval. Ambjorn and Wolfram@26# have computed the
constant-energy contours fora13a23a3 geometry for the
regiona2 ,a3.1.

The four different computations of the stress-energy t
sor ~referenced in the previous paragraph! for special cases
of a conductive rectangular cavity were done using a var
of methods as discussed in Sec. II. These calculations
agree with each other, although none of the calculations
explicitly included the vacuum energy associated with
right angles. Hacyanet al. @27# identified two divergent
terms, one proportional to the perimeter of the cavity an
second term proportional to the volume. The term Luko
@19# identified as a divergent correction to the energy for
case of a perfect rectangular cavity with infinitely sharp c
ners appears to correspond to the divergence of Hacyanet al.
@27# that is proportional to the perimeter. For the real c
ners, the correction to the energy for the effect of a fin
radius of curvature is finite and equal to the finite correct
dE.

To get some idea of the scale of the Casimir energy
terms of familiar quantities, we can rewrite the equation
the vacuum energy in a cube~Table I! in terms of the Comp-
ton wavelengthlC and massm of the electron,

EC50.0916~lC /a!mc2, ~1!

or in terms of the energyEph of the longest-wavelength pho
ton (l52a) that just fits in the cavity,

EC5~0.0916/p!Eph. ~2!
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For cubes with sides of 100 and 0.1 nm, respectively,
vacuum energies are 0.18 and 180 eV. The correspon
pressures are 0.931024 and 0.93108 atm. These pressure
are equivalent to the blackbody radiation pressure (bT4/3) at
temperatures of 1.33104 and 1.33107 K, respectively. Al-
though the vacuum energy density in this example is sm
by some scales, it increases rapidly as dimensions decr
and is about 43108 and 431020, respectively, times as larg
as the energy density of an infinite photon gas at room te
perature.

There is no easy way to understand the geometrical
pendence of the vacuum stress and energy. Schwingeret al.
have described the Casimir force between uncharged
ductors as ‘‘one of the least intuitive consequences of qu
tum electrodynamics@29#.’’ In a recent review article de-
scribing ways of computing vacuum energy and the Casi
effect, a section was titled ‘‘The mystery of the Casimir e
fect’’ @30#. In an effort to gain some understanding of th
Casimir effect, particularly the geometrical dependence
the force, we have explored the conductive rectangular c
ity in some detail, paying attention to the fundamental co
cepts and the symmetries, and to analyzing and graphing
three-dimensional computations. We have performed
merical computations of the vacuum energies and Cas
forces for the general case of a cavity with sidesa1 ,a2, and
a3.

The organization of the paper is as follows. In Sec. II w
present the details of the numerical calculations of
vacuum energye(a) and forcesF(a). In Sec. III we consider
the nature of the vacuum energy and stresses in a rectan
cavity with sidesa1 ,a2 ,a3, including the implications of the
geometrical symmetry. In this section, we illustrate the g
eral results using figures based on the calculations of Sec
which show constant-energy surfaces, constant-force
faces, and contours. In Sec. IV we give a brief conclusio

II. COMPUTATION OF THE VACUUM ENERGY
AND VACUUM FORCES

The vacuum energye at 0 K, given as a function of the
dimensions of a rectangular box with perfectly conduct
sides of lengtha[(a1 ,a2 ,a3), is e(a1 ,a2 ,a3)[e(a). This
energy represents the change in the zero-point vacuum
ergy due to the presence of the conductive surfaces of
box. We do not consider the variation of the energy dens
with position within the cavity. Formally, the vacuum energ
e(a) is computed as the total vacuum energy with the b
present minus the total vacuum energy when the box dim
sions go to infinity. By defining the energy in this manne
the free-field vacuum energy divergence can be made to
cel by suitable mathematical procedures and a finite re
for e(a) is obtained.

Ambjorn and Wolfram@26# derived an expression for th
change in the vacuum energye(a) due to a perfectly con-
ductive rectangular box with sides (a1 ,a2 ,a3) by summing
the eigenmodes. The divergent sums were regularized by
ing analytic continuation in the dimensionality of the cavi
and the result was given in terms of the Epstein Zeta func
@31#. From their equations, and the definition of the stand
0-3
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G. JORDAN MACLAY PHYSICAL REVIEW A 61 052110
Zeta function, one can show that for the case of electrom
netic radiation in a three-dimensional cavity, the Casimir
ergy is given by

e~a1 ,a2 ,a3!52~\c/16p2!@a1a2a3z~a1 ,a2 ,a3 ;4!

2~p3/3!~1/a111/a211/a3!#, ~3!

where this form of the Epstein Zeta function is defined b

z~a1 ,a2 ,a3 ;s!5(
n3

`

(
n2

`

(
n1

`

@~a1n1!21~a2n2!2

1~a3n3!2#2s/2. ~4!

The sum is over all values ofn1 ,n2 ,n3 except when all
indices equal zero. This Zeta function is absolutely conv
gent for nonzeroai if s.3, in which case the terms may b
summed in any order as long as all terms are included@32#.
The energye(a) is finite as long as each sidea1 ,a2 ,a3 is
nonzero. There is a manifestly negative contribution toe(a)
given by the Zeta function, and a manifestly positive con
bution given by the second term, which is proportional to
area/volume of the cavity. To give a sense of scale, we n
that this positive term equals148 times the total energy of the
three longest-wavelength photons that can fit in the ca
(l i52ai). Mathematically, the positive term occurs becau
modes in which two of the three indicesn1 ,n2 ,n3 are zero
cannot propagate within the cavity~the fields vanish!, and
therefore cannot contribute to the energy. This term equ
2 1

2 of the sum of the zero-point energies of one-dimensio
resonators of lengtha1 ,a2 ,a3, respectively@25#. If one ~or
two! of the dimensions is much larger than the other dim
sion~s!, then the second term becomes negligible, and
energy is always negative and depends on only the sm
sides@33#. The Zeta function term has been interpreted
arising from the multiple reflections of virtual photons tra
eling perpendicular to the walls in periodic orbits@33#.

This expression for the energy, Eq.~3!, agrees exactly
with that obtained by Lukosz@25#, who summed all the
modes in the cavity and employed an exponential conv
gence factor. The justification for the validity of the conve
gence factor was provided by the generalized Weyl theor
which states that the eigenfrequency density per unit volu
of the resonator is independent of the size and form of
resonator for frequencies much higher than the fundame
eigenfrequency. A third calculation for cavities is provid
by Hacyan et al. @27#, who obtained expressions for th
stress-energy tensor from the Fourier transforms of the
relation functions for the quantized electromagnetic fie
This process allowed them to isolate and remove the di
gences. They did numerical calculations of components
the stress-energy tensor in configuration space for a 131
3c cavity which are in agreement with Eq.~3! and our re-
sults. This agreement shows that our application of the p
ciple of virtual work to calculate forces from the energy
justifiable. Mostepanenko and Trunov@28# also report results
for the special case ofa15a2 that are in agreement with ou
formulation above.
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In this paper, we evaluate Eq.~3! for e(a) to compute the
energies for arbitrary dimensions (a1 ,a2 ,a3). The evalua-
tion was done using an algorithm developed by Crandall
Buhler @34#. To secure accurate sums, this algorithm u
direct summation in which progressively larger sets of ter
are averaged together asni increases. In principle, the accu
racy of each calculation should be to order@exp(29p)#'5
310213. In all computations we set\5c51. The figures do
not include the effect of the correction termdE, which de-
pends on the radius of curvature, since we do not know
constant of proportionality.

Most of the graphs are based on computations
e(a1 ,a2 ,a3) for values ofa1 , a2, anda3 between 0.1 and
4.0, with a mesh of 0.1. Derivatives were computed num
cally to first order. Equation~14! was used to check the
consistency of the computations. The first few points n
the beginning of the interval~values ofa1 ,a2 ,a3 in the range
0.1 to 0.3! show a small error; the remaining points do n
show significant error. The computations were done o
Dell XPS R450 450 MHz computer with 384 megabytes
RAM, and took several weeks running 24 h/day to finish

III. NATURE OF THE VACUUM ENERGY AND STRESS

The energy differencee(a) can depend only on the
lengths of the sides~assumed to be positive!, on Planck’s
constant\, and on the speed of lightc. From dimensional
consideration, the energye must be proportional to\c times
f (a), where the functionf (a) has the dimensions of invers
length:

e~a!5\c f~a!. ~5!

Since the energy cannot depend on the choice of axes
dependence ofe(a) on a1 must be identical to the depen
dence ona2 or a3. Hence the functionf (a1 ,a2 ,a3), as well
as the function e(a1 ,a2 ,a3), which is proportional to
f (a1 ,a2 ,a3), are homogeneous functions ofa1 , a2, anda3
of degree21:

e~la1 ,la2 ,la3!5l21e~a1 ,a2 ,a3!. ~6!

This property allows us to calculate values of the energy
arguments that are proportional. It also indicates that the
faces of constant energy will be nested as a function of
energy, with higher energies for smaller cavities. All surfac
of constant positive energy are identical with a uniform
lation a→la; similarly all surfaces of constant negative e
ergy are identical with a scale change. For example, if
energy corresponding to a constant-positive-energy sur
is doubled, then the dimensions for the new surface are cu
half. The zero-energy surface is unique in that scale chan
map it into itself, which means the surface must extend
infinity, separating the negative- and positive-consta
energy surfaces.

The energye(a) will be unchanged if any two dimen
sions, for example,a1 anda2, are interchanged by a reflec
tion. In addition, a rotation by1120° about the symmetry
axis a15a25a3 results in the cyclic permutationa1→a2 ,
a2→a3 , a3→a1, which leaves the energy unchanged.~Ro-
0-4
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ANALYSIS OF ZERO-POINT ELECTROMAGNETIC . . . PHYSICAL REVIEW A 61 052110
tations or reflections in which the values ofa1 , a2, or a3 can
assume negative values are not allowed. The pointa50 must
remain unchanged.! The symmetry group corresponding
these geometrical transformations isC3v , where theC indi-
cates ‘‘cyclic,’’ the 3 indicates a threefold axis of symmetr
and thev indicates the presence of three vertical planes
symmetry through the symmetry axis. The molecules N3
and ClCH3 are members of this symmetry group. Each s
face of constant energy displays theC3v symmetry and is a
one-dimensional representation of this group@35#. The trans-
formation of the constant-energy surfaces under dilati
constitutes an additional symmetry.

A. Constant-energy surfaces

It is useful to consider the special case of a cube in or
to derive some general results about constant-energy sur
for positive and negative energies. For the special case
cube, the energy dependence collapses frome(a1 ,a2 ,a3) to
e(a,a,a) and for dimensional reasons discussed above
must be proportional to 1/a. The constant of proportionality
in e, which must be obtained by direct computation, is sho
in Table I.

For every positive energyEp , there is a correspondin
cube that has that energy. The axis of symmetry (a15a2
5a3) must intersect the constant-energy surface forEp at
the point that corresponds to this cube. At this point,
surface is normal to the axis of symmetry sinceF15F2
5F3. From the homogeneity and symmetry ofe(a), it fol-
lows that all the surfaces of constant positive energy
continuous, nested or nonintersecting surfaces that clos
themselves for positivea. The zero-energy surface separa
all positive-energy surfaces from the negative-energy s
faces. This also implies that all negative-energy surfaces
be open, nested surfaces. It also follows that for all rect
gular cavities with a given positive energy, the cube is
one with the longest main diagonal. The statements in
paragraph are valid whether we are talking about energy d
sity or energy.

In order to illustrate these results, we present some of
figures based on the computations described in Sec. II.
ure 1 shows two views of the surfaceS0 corresponding to
zero vacuum energy for values of the sides up to 4.~We use
natural units in which\5c51.! Figure 2 shows a separa
computation of the zero-energy surface for values up to
The surfaces in both these figures show the rotational
reflection symmetry of the groupC3v discussed above. In
addition, the zero-energy surface is seen to be invariant
der dilation. Figure 3 shows a positive-energy surface fr
two different views to display unambiguously the symme
of the surface. Figures 4–6 show different sets of nes
negative- and positive-energy surfaces, from different ob
vation points. Portions of the surfaces for values
a1 ,a2 ,a3.4 are not plotted, resulting in the holes in thee
50.025 surface in Fig. 6. All positive-~or negative-! energy
surfaces are similar and can be obtained from each o
using the dilation operation becausee(a) is a homogeneous
function. All constant-energy surfaces approach the origin
a→0 but do not converge to it. When the origin is viewe
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from along the axis of symmetry, a small hexagonal open
in the constant-energy surface surrounds the origin@Fig.
1~b!#.

One of the advantages of working in terms of consta
energy surfaces is that they provide a geometrical interpr
tion of the vacuum forces. From the first-order theory
functions, the changede in the vacuum energy in the cavit
that occurs when we move a distanceda is given by

de5da•“ae~a!, ~7!

where the gradient is taken with respect to (a1 ,a2 ,a3).
Physically, this equation represents the principle of virtu

FIG. 1. Surface of zero energye(a)50 plotted for values
a1 ,a2 ,a3,4. In ~a! the surface is plotted with the symmetry ax
a15a25a3 vertical; in ~b! the surface is plotted with the viewpoin
along the symmetry axis.
0-5
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G. JORDAN MACLAY PHYSICAL REVIEW A 61 052110
work, in which the differential change in vacuum energy
the cavity equals the sum of the external forces exerted
the cavity walls times the differential changes in the cor
sponding dimension. The external force on each wall equ
the negative of the force on the walls of the cavity due
vacuum fluctuations. Thus we identify

F~a!52“ae~a!, ~8!

where the componentF152]e/]a1 is the total vacuum
force on the face normal to thea1 direction, etc. The averag
pressure in thea1 direction isF1 /(a23a3). The energye(a)
decreases most rapidly in the direction of the forceF(a). The
conservation of energy that occurs when the dimension
the cavity are altered quasistatically is represented by

de52da•F~a!. ~9!

Consider a surfaceSK of constant energyK defined by

K5e~a!. ~10!

If the displacementda is tangent to the surface of consta
energy, then the corresponding change in energy vani
and

05da•F, ~11!

which implies the important result that the vacuum for
F(a1 ,a2 ,a3) corresponding to the cavity with side
(a1 ,a2 ,a3) must be perpendicular to the surfaceSK of con-
stant energy at (a1 ,a2 ,a3) @36#. The relationship is also
obeyed by the correctiondE5A\c(a11a21a3)/R2 to the
energy for a finite radius of curvatureR. The surface of con-
stantdE is a plane perpendicular to the main diagonal of
cavity. From Eq.~8! we find thatdE yields a constant force

FIG. 2. Surface of zero energye(a)50 plotted for values
a1 ,a2 ,a3,10. The roughness along the sides of the surface is
artifact due to the coarseness of the mesh. The surface is the
shape as that in Fig. 1.
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dF5A\c/R2 direct along the main diagonal of the cub
perpendicular to the constant-energy surface.

The components of the averaged stress-energy tenso
functions ofa are given as@37#

^T00~a!&5e~a!/V,

^T11~a!&5F1~a!/a2 a352~1/a2a3!]e~a!/]a1

~and cyclic permutations!. ~12!

n
me

FIG. 3. Constant-energy surface withe(a) equal to 0.03. In~a!
the surface is viewed from the side; in~b! the surface is viewed
from along the symmetry axis.
0-6
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FIG. 4. Set of nested surfaces of constant energy plotted fora1 ,a2 ,a3,4. The values ofe(a) are2100,250,220,21,0.0. The energy
increases as the surfaces get closer to the symmetry axis.
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The averaged stress-energy tensor has no dependenc
x,y,z since we have averaged over the volumeV of the cav-
ity, or averaged over the area of a face. The off-diago
terms, which contain sine and cosine functions, vanish a
averaging. The divergence of the stress tensor vanis
within the cavity, as it must, since the electromagnetic fi
is free except at the boundaries. Since the photon is mass
there is no intrinsic unit of length, and the theory is invaria
under scale transformations of the electromagnetic fi
strength. This invariance is reflected in the vanishing of
trace of the stress-energy tensor@15#.

We can demonstrate directly that the stress-energy te
defined in Eq.~12! has zero trace by applying Euler’s the
rem for homogeneous functions@38#. This theorem states
that for a homogeneous functionf (x) of degreep, f (lx)
5lpf (x), and we have

x•“xf ~x!5p f~x!. ~13!

Applying Euler’s theorem toe(a) we obtain
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a•F~a!5e~a!. ~14!

If we write this equation in components and divide by t
volume, we find that the trace of the stress-energy ten
vanishes identically.

Equation~14! also shows that the energy in the cavity c
be interpreted as the sum of the productsaiFi of the force on
each side times the length of that side. This result, which
form of the mean-value theorem applied to the conserva
of energy, helps explain some of the results obtained
rectangular cavities, for example, the following.~1! Cavities
with zero total energy must have positive forces on one
more faces and negative forces on one or more faces.~2!
Cavities with negative~positive! total energy must have a
negative~positive! force on at least one side.~3! Cavities
with all positive forces must have positive energy. If w
apply Eq.~14! to a cube, we obtain a forceF(a)5e(a)/3a
on each face. This result is comparable to the usual resul
the isotropic pressurep of an infinite photon gas in terms o
0-7
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FIG. 5. Set of nested surfaces of constant energye(a) equal to210,21,20.05,0.05, plotted fora1 ,a2 ,a3,4. The most negative
surfaces are closest to the axes.
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its energy densityU, namely,p5U/3. In the general case th
energy within the cavity is not isotropic.

B. Constant-energy contours and energy surfaces

Two-dimensional contour plots of constant energy can
obtained by taking cross sections of the constant-energy
faces such as are shown in Figs. 4–6. If we take cross
tions with constant values ofa3 , we obtain the constant
energy contours, given as functions ofa2 anda3, in Fig. 7,
for a350.5,1.0,3.5. The dark line in each graph shows
zero-energy contour. The maximum energy in the conto
occurs for the geometries 0.330.330.5, 0.630.631.0, and
2.132.133.5, respectively. The contours do not show t
rotational symmetry of the constant-energy surfaces bec
the planes with constanta3 cut through the constant-energ
surfaces at an angle. Ambjorn and Wolfram@26# reported
that, for a contour witha351.0, the maximum energy woul
occur for 13131. However, based on their graph, they d
not consider values ofa1 and a2 less than 1. Hacyanet al.
@27# reported a maximum energy for a 1313a3 box when
a350.57 that is in agreement with our calculations (1/A3).

It is useful to consider the constant-energy surfaces
coordinate system that explicitly displays theirC3V symme-
try. One such coordinate system can be obtained by a E
rotation, rotating by245° about thea3 axis and then by
cos21(1/A3) about the newa18 axis. The equations of trans
05211
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formation to the (a18 ,a28 ,a38) system are

a185~1/A2!~a12a2!,

a285~1/A6!~a11a2!2A~2/3!a3 , ~15!

a385~1/A3!~a11a21a3!.

This rotation takes the symmetry axisa15a25a3 into thea38
axis in the rotated system. Thus thea38 axis is the axis of
symmetry of the constant-energy surfaces. To obtain the
ergy contours in the primed system for a constant value
a38 , we plot the locus of points for whiche(a18 ,a28 ,a38) has
constant values and wherea11a21a35const5(A3)a38 .
This locus of points will lie in a plane in both coordina
systems. All the points on this plane of constanta38 corre-
spond to boxes that have the same unvarying perimeter.
ure 8 shows two-dimensional contour plots of the energy
the primed system fora3850.8, 1.75, and 3. In Fig. 8~a!, the
region near the point (08,08) corresponds to the maximum
energy e50.19, which is the energy of a cube of sid
a38/A350.46. Similarly in Fig. 8~b!, a3851.75 and the maxi-
mum energy corresponds to the contoure50.09 near the
center.

The energy contours in the rotated system lie in the pl
perpendicular to the axis of symmetry and therefore sh
0-8
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FIG. 6. Set of nested surfaces of constant energye(a) equal to25,20.5,20.05,0.0,0.02,0.025,0.03, with the most negative surfa
closest to the axes.
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C3V symmetry about the origin. The maximum positive e
ergy for each plane will be the point (08,08) that corresponds
to the cube (08,08,a38), which is a cube with sidea
5a8/A3. The symmetry plane determined bya385const is
tangent to the constant-energy surface corresponding to
cube at the point (08,08,a38). The constant-energy surface
for higher-energy cubes are smaller and so will not inters
the plane normal to the symmetry axis. The surfaces
smaller energies will be larger and therefore intersect
symmetry plane. Thus, for boxes with a constant perime
the cube has the largest positive energy. The largest neg
energy is unbounded, since we may make one side arbitr
small, ande(a) becomes arbitrarily large and negative.
this primed coordinate system, the correctiondE to the en-
ergy for a finite radius of curvature can be written asdE
5A\c(a38)/R

2.
As an alternative to two-dimensional energy conto

plots, we can employ a three-dimensional plot in which
energye(a) is given as a function ofa1 and a2 for fixed
values of a3. Figure 9 shows the plots of the energ
e(a1 ,a2) for a350.5,1.0,3.5. These figures correspond
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the contour plots of Fig. 7. The sharp changes in energy
small values ofa1 and a2 correspond to the ‘‘pizza box’’
geometries.

C. Approximate form of zero-energy surface

The zero-energy surfaceS0 ~Fig. 1! separates the positive
and negative-energy surfaces. Much of the behavior of
cavity is governed by this surface. Its shape can be appr
mated as three planes, with their corners held at the ori
and tilted by an angle toward the linea15a25a3. The ques-
tion arises, what governs the tilt of these planes? Cons
the vectora, which goes from the origin to any point onS0.
The angleF3 that the vectora makes with thea350 plane is

F35tan21$a3 /@~a1!21~a2!2#1/2%. ~16!

From symmetry, we takea15a25a and obtain the angle o
the tilted plane

F35tan21@a3 /aA2#. ~17!
0-9
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FIG. 7. Contours of constant energye(a) as a function ofa1 and
a2 for a3 5 ~a! 0.5, ~b! 1.0, ~c! 3.5. The contours correspond t
values of e50.111,0.1,0.05,0.03,0.0,20.05,20.1,20.15,20.2,
20.25,20.5,21.0. ~Not all contours are present for every plot!
The zero-energy contour is the heavy black line. Positive-ene
contours lie within the zero-energy contour.
05211
y

FIG. 8. Contours of constant energye(a) for a385 ~a! 0.8, ~b!
1.75, ~c! 3.0. These contours are in a rotated coordinate system
which the newa38 axis is the axis of symmetry. The contours co
respond to values of e(a) equal to 25.0,20.5,
20.05,0,0.052,0.9,0.2. Not all contours appear in each plot.
0-10
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The value ofF3 can be obtained by noting thate(a,a,a3)
5e(1,1,a3 /a)50. For this energy to vanish, we compu
a3 /a50.408 and 3.48. The smaller value corresponds to
adjacent surface ofS0 which is visible in Fig. 1, and the
larger value to the portion of the zero-energy surface tha
hidden from view. We findF3516.1°,67.9°.

FIG. 9. The energye(a) as a function ofa1 anda2 for a35 ~a!
0.5, ~b! 1.0, ~c! 3.5, respectively.
05211
e
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D. Constant-force surfaces

The componentsFi(a) of the total vacuum force are first
order partial derivatives ofe(a), which is a homogeneou
function of degree21, and thef i(a) are therefore homoge
neous functions of degree22:

Fi~la1 ,la2 ,la3!5l22Fi~a1 ,a2 ,a3!. ~18!

The surface that corresponds to the constant forceFi50 will
transform into itself under scale changes for arbitrarily lar
l, and must therefore extend to infinity, separating the reg
in which Fi is positive from the region in whichFi is nega-
tive. The region of space that includes the linea15a25a3,
corresponding to a cubic geometry, is the domain of all po
tive forcesFi .

In Fig. 10~a!, we show the surface corresponding to t
constant forceF350. In the regions closest to the planea3

50, the forceF3 is negative; on the other side of the surfa
the force is positive. In Fig. 10~b!, the three surfacesF1

50, F250, F350 are plotted. These surfaces define t
various cavity geometries for which the forces are positive
negative or zero. The intersection of two of these surfa
defines a set of geometries (a1 ,a2 ,a3) for which, for ex-
ample,F15F250. In this region,F3.0, so the energy mus
be positive. The central conical region corresponds to
proximately cubical boxes for which all three forces are po
tive, and for which@by Eq. ~14!# the energy is also positive
The largest regions, near each planeai50, have two forces
positive and one negative, and correspond to geome
ranging from a cake box to a pizza box~the one side which
is smaller than the other two sides experiences the nega
or attractive force!. In the limit of a thin, large, square pizz
box, the energy density is negative, the attractive pressu
three times the energy density, and the repulsive press
are both minus the energy density@15#. In the three narrow
regions bounded by the intersection of two surfaces, t
forces are negative, one positive. These regions corresp
to toothpaste boxes that have an approximately square c
section, with a longer third side. The longer sides experie
approximately equal attractive forces. For a long, squ
toothpaste box, the energy density is negative, four si
have attractive~inward! pressures equal to the energy de
sity, and the two ends have repulsive~outward! pressures
equal to minus the energy density@25#.

Figure 11~a! shows a two-dimensional contour plot of th
zero-force surfaces fora351. TheF150 (F250) contour
is concave toward thea2 (a1) axis. Also shown in this fig-
ure is the approximately triangular contour for the zero e
ergy e50. From this figure one can see, for example, t
following. ~a! If both F1 andF2 are negative, thene may be
positive or negative.~b! If only F1 is negative,e may be
positive or negative.~c! If no forces are negative, thene is
positive. ~d! There are no regions in which all forces a
negative. Figure 11~b! shows the corresponding contours
the rotated coordinate system fora3853.
0-11
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G. JORDAN MACLAY PHYSICAL REVIEW A 61 052110
There is no geometry for which all forces are zero, a
thus there is no local maximum or minimum value ofe(a),
and there are no stable rectangular cavities without introd
ing some material properties. Casimir attempted to model
electron as a spherical shell of charge held together

FIG. 10. Contours of zero force.~a! F3(a)50. The force
F3(a1 ,a2 ,a3) is negative for points (a1 ,a2 ,a3) on the concave
side of this surface.~b! Intersecting surfaces forF150, F2

50, F350. These surfaces define regions in which forces h
characteristic signs, for example, in the region that includes
symmetry axis all forces are positive.
05211
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vacuum stresses, but the stress was computed to be outw
resulting in instability. Our results show that a rectangu
box also cannot provide a stable structure with attract
forces on all faces, but suggest that perhaps a torus coul
stable@39#.

We have computed constant-force surfaces for a repre
tative set of forces. Figure 12 shows a set of contours
constant forceF2 ranging from 25 to 150 (F1 and F3
would have the same shape but would be rotated!. The four
positive forces are on the side of the zero-force contour
includes the linea15a25a3. Every positive surface has
transition region in which it bends about 90° away from t
F50 surface. The most negative values ofF2 ~near 0
&a2) correspond to the attractive force on the large surf
in the parallel-plate~pizza box! configuration. The most

e
e

FIG. 11. Contour plots of the zero-force surfaces and the ze
energy surface for~a! a351.0; ~b! a3853.0 ~rotated coordinate sys
tem!. The curve concave toward thea2 axis is F150. The bold
black lines correspond to the zero-energy surface.
0-12
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FIG. 12. Contours of constant forceF2(a)525.0,20.5,20.05,0.0,0.005,0.05,0.5,5.0,50.0, where the contours are labeled in order
the top left corner down, from25 to 150.
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positive values ofF2 ~near 0&a1 or 0&a3) correspond to
the four surfaces around the edge of the pizza box.

If we take slices witha3 constant through the set o
constant-force contours forF2 in Fig. 12, and similar sets fo
F1 andF3, we obtain a set of two-dimensional contour su
faces. Figure 13 shows these contours as functions ofa2 and
a3 for a151. The thick line represents the contour of ze
force. The transition regions forF1 and F3 are clearly vis-
ible. Also shown are the contours of constant energy. T
thick line with a triangular shape is the zero-energy conto
The dark regions near the axes represent the regions of
positive and negative forces. These two-dimensional con
plots can be obtained from graphs of the forcesF1 ,F2 ,F3 as
functions ofa2 anda3, for a fixed value ofa351, which are
shown in Fig. 14.F1 andF2 are simply rotated versions o
each other, andF3 becomes positive whenevera3@a2 or
a3@a1, which corresponds to one of the long sides in t
usual pizza box configuration. A contour plot of the mag
tude of the total force is shown in Fig. 15, in which th
largest values ofF are closest to the axes, and the small
values ofF are in the central region in which shapes a
approximately cubical.
05211
-

e
r.
rge
ur

e
-

t

In order to understand physically the appearance of p
tive forces in some of the characteristic rectangular cavi
mentioned in the previous paragraph, we consider the m
densities. The mode density near a curved surface has
shown to vary as the radius of curvature@18#. For a right
angle of a conductive material, the mode density in the
mediate region of the right angle is very high; in fact, it
infinite without a frequency cutoff, leading to a high positiv
vacuum energy concentrated in the region. The vacu
forces are such that they try to open the right angles to cr
a flat region. In the cavity geometries in which one or tw
sides are much smaller than the other sides, several r
angles are adjacent and the combined effect of the incre
mode density appears to be a local net positive energy d
sity and an outward force on the surface lying between
right angles. This interpretation might provide a rough phy
cal picture for the outward forces predicted for a pizza b
geometry and a toothpaste box geometry. However, it m
not be applicable since no explicit account was taken of
effects of the intersecting conductive planes in the ene
analysis.
0-13
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G. JORDAN MACLAY PHYSICAL REVIEW A 61 052110
It is useful to plot graphs of the forces and energy
several specific, representative geometries. For the ge
etries 130.53a3 , 1313a3, and 133.53a3, Fig. 16
shows the variation of the forces and the energy witha3. It is
apparent that the energy and the forces vary approxima
linearly with a3 for a3.a2 ,a1. In this linear range, the de

FIG. 13. Constant-energy contours fora351 superimposed on
the constant-force contour for~a! F150; ~b! F250; ~c! F350. The
triangular-shaped bold line is the zero-energy contour. The o
bold line is the zero-force contour. Constant-energy contours co
spond to energy values equal to20.25,20.2,20.15,20.1,
20.05,0.0,0.05,0.1,0.111. Constant-force contours correspon
force values equal to20.2,20.1,0.0,0.03,0.031,0.0312,0.032,0.0
05211
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rivative of the energy with respect toa3 yields the constant
forceF3. At the maximum of the energy curve,F3 vanishes.
The maximum energy values for the three geometries oc
at a350.5,0.75,1.25, respectively. As the energy peaks s
to larger a3, the peak energy and the slope of the ene
curve both decrease. The region in which the energy is p
tive first increases and then decreases. Indeed, for th
33.53a3 geometry, the energy peak is almost zero, and
aspect ratios greater than 3.5, the energy is never posi
For most values ofa3, two forces are positive or two force

er
e-

to

FIG. 14. Forces plotted as function ofa1 ,a2, for a351.0: ~a!
F1; ~b! F2; ~c! F3.
0-14
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FIG. 15. Contours of constant magnitude of the total forceuFu. Contours are shown foruFu equal to 5.0,0.5,0.05,0.005.
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are negative. Only for the 1313a3 geometry is there a re
gion in which all forces are positive (0.75,a3,1.6). In Fig.
17, we have plotted the energy density and the pressure
the same geometries as in Fig. 16.

Some general mathematical results may be obtained
constant-force surfaces. If we apply Euler’s theorem to
homogeneous functionsFi , we obtain

a•“aFi~a!522Fi~a!. ~19!

If we multiply by ai and sum overi 51,2,3, and use Eqs.~4!
and ~10!, we obtain a second-order partial differential equ
tion for e(a):

(
i 51

3

(
j 51

3

~aiaj]
2/]aiaj22!e~a1 ,a2 ,a3!50. ~20!

Equation~2! can be expressed as an eigenvalue equatio
terms of the scalar operatorf a for the component of the force
F alonga, the principal diagonal of the box. Defining

f a52a•“a , ~21!
05211
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we find f ae(a)5e(a), and Eq.~20! becomes

~ f a
221!e~a!50. ~22!

The operatorim f a is the generator of dilations. The energ
e(a) is an eigenfunction of this generator, and it transfor
under dilations ase(a)→e(ema)→e2me(a). In terms of the
usual quantum mechanical operators, the forceFi is analo-
gous to the momentumpi and the torque to the angular mo
mentum.

Equation~2! can be solved to obtain the form ofe(a) for
a cube. For this case, and for the general case, since Eq.~20!
is a homogeneous equation that is linear ine(a), the bound-
ary conditions must provide the information for the prop
numerical factors. One boundary condition that removes
additive constants is that the energy vanishes at infinity
second condition, such as the value of the energy for a s
cific cube or for the parallel-plate geometry, appears nec
sary to secure the proper factors.

IV. CONCLUSION

By consideration of the symmetry of vacuum energy fo
rectangular cavity, we have been able to derive general
0-15
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G. JORDAN MACLAY PHYSICAL REVIEW A 61 052110
sults that aid in understanding the dependence of the vac
energy and force on the dimensions of the cavity. The ene
is a homogeneous function of the dimensions, which lead
a relationship between the forces and the energye(a)5
a•F(a). This equation provides a direct geometrical link b
tween the energy and the forces, and from it follows
traceless nature of the stress-energy tensor. It may help
solve some of the uncertainties in the definition of a phy
cally meaningful vacuum energy@16#. The forcesF are nor-
mal to the surfaces of constant energy. Graphing th
surfaces in three dimensions displays theC3v symmetry.

FIG. 16. Forces (F1, short-dashed line;F2, medium-dashed
line; F3, long-dashed line! and energye(a) ~solid line! as a function
of a3 for cavities with dimensions~a! 130.53a3; ~b! 1313a3;
~c! 133.53a3.
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Surfaces of constant positive energy~constant negative en
ergy! are transformed into each other using scale chan
Constant-energy surfaces were also plotted in a rotated c
dinate system in which the newa38 axis is the symmetry axis
of the constant-energy surfaces. The contours of cons
energy for a385const ~constant perimeter! show the C3v
symmetry about the origin, and show that the maximum
ergy occurs for a cube at (0,0,a38). There is no cavity con-
figuration for which all forces vanish~or are negative!, so

FIG. 17. Pressures (P1, short-dashed line;P2, medium-dashed
line; P3, long-dashed line! and energy density~solid line! for the
same cavity dimensions as in Fig. 16:~a! 130.53a3; ~b! 131
3a3; ~c! 133.53a3. Note the ordinate scales are different for ea
graph.
0-16
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ANALYSIS OF ZERO-POINT ELECTROMAGNETIC . . . PHYSICAL REVIEW A 61 052110
there is no local maximum or minimum of the energy fun
tion. Only for the cube are all forces equal and we m
consider the average energy density as being isotropic.

The force on each face of the cavity is also a homo
neous function of the dimensions. Surfaces of zero force
the surface of zero energy, which are all invariant un
dilations, divide the space spanned by the vectorsa into three
types of regions with well-defined characteristics.~There are
a total of nine different regions, three equivalent regions
each axis.! The three regions are as follows.~1! A region in
which the forces and the energy are positive, and the ge
etry is cubical or nearly cubical.~2! A region in which two
forces are positive, one is negative, and the geometry is
a cake box or a pizza box, with the attractive force on
largest side, and the repulsive forces on the smaller si
and the energy can have either sign depending on the as
ratio. ~3! A region with two negative forces and one positi
force, in which the geometry is like a toothpaste tube,
positive force being on the ends, and the energy can h
either sign depending on the aspect ratio.

Given the energy for a cube, it appears that it may
possible to obtain other geometries with the same energ
a suitableC3v symmetry coordinate transformation. It mig
be possible to expand the symmetry group to include tra
formations to other energy representations ofC3v . If this
were accomplished, one might be able to generate all va
of e(a1 ,a2 ,a3) from one particular value ofe using the op-
erators of this expanded group.

One of the puzzles that remains is the physical expla
tion of what determines the sign of the vacuum force. F
example, why is the vacuum stress positive for the sph
the cube, and similar configurations? One approach to
conundrum is to consider the number of modes present.
a sphere, using the results of Balian and Duplantier@17#, one
computes that1

4 additional modes are present when t
sphere is put in the vacuum field. Hence the vacuum ene
is positive. Although mathematically correct, the notion o
fractional mode is perplexing, and Deutsch and Cande
@16# maintain that the cutoff used by Balian and Duplant
@17# to derive their mode function is unphysical. In Ref.@40#
Hushwater explained the repulsive Casimir forces in para
plate geometries as due to the redistribution of the free fi
s
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vacuum modes that occurs with the boundary conditions
the geometry. For the case of a perfectly conducting and
infinitely permeable plate he showed the repulsive fo
arises from the curvature of the mode function. One issu
his explanation is that the curvature leading to the repuls
force is due entirely to the frequency cutoff function used

Negative energy densities tend to appear in ‘‘asymptot
cases, that is, when at least one dimension is a factor of
more smaller than the other dimensions. This suggests
the most important factor leading to negative energy de
ties may be mode exclusion. On the other hand, posi
energy densities tend to occur when all dimensions are
similar magnitude, suggesting that the most important fac
may be the constructive relationship between the electric
magnetic fields in the three orthogonal directions.

It may be of some value to understand what cause
positive energy density and positive forces and nega
forces in order to optimize geometries. Many other puzz
with vacuum fluctuations remain. With an increased und
standing of vacuum forces and energy in rectangular cavit
including the effects of temperature, it may be possible
engineer micromachined devices to measure the repul
forces and to make useful structures that utilize vacuum
ergy and Casimir forces. Biological structures, for examp
microtubules in cell cytoskeletons, the endoplasmic reti
lum, or diatoms, may have functions that involve interacti
with the vacuum field.

ACKNOWLEDGMENTS

I would like to thank Carlos Villareal for sharing some o
his unpublished results on force and energy calculation
rectangular cavities, for his generous assistance w
MATHEMATICA , and suggestions regarding the final man
script. I would also like to thank Robert L. Forward an
Peter Milonni for helpful conversations, and Lowell S
Brown, who first got me interested in vacuum fluctuatio
many years ago. My thanks also to Bryce DeWitt for poin
ing out some of the problems with perfect-conductor bou
ary conditions. Thanks to the staff at Quantum Fields LL
and to the NASA BPP program for their support of the co
tinuation of this research.
h.

ki,
@1# H. B. G. Casimir, K. Ned. Akad. Wet. Proc.51, 793 ~1948!.
@2# P. Plunien, B. Muller, and W. Greiner, Phys. Rep.134, 87

~1986!.
@3# H. Bethe, Phys. Rev.72, 339 ~1948!.
@4# T. Welton, Phys. Rev.74, 1157~1948!.
@5# J. Schwinger, L. DeRaad, Jr., and K. Milton, Ann. Phy

~N.Y.! 115, 1 ~1978!.
@6# P. Milonni, The Quantum Vacuum~Academic, San Diego

1994!, p. 239.
@7# M. Sparnaay, inPhysics in the Making, edited by A. Sarlemijn

and M. Sparnaay~Elsevier, Amsterdam, 1989!. See also D.
Tabor and R. H. S. Winterton, Proc. R. Soc. London, Ser
312, 435 ~1969!. References@2# and @27# provide additional
experimental references.
.
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