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Quantized-field description of light in negative-index media
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Abstract

Using a quantized-field approach, we show how radiative recoil, the Doppler effect, and spontaneous and stimulated

radiation rates are affected when the radiator is embedded in a host medium having a negative index of refraction.
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1. Introduction

There is nothing to prevent both the electric

permittivity � and the magnetic permeability l from

being negative, although no known, naturally oc-

curring material has this property. For such a ma-

terial an examination of Maxwell�s equations and
the boundary conditions implies that the refractive

index n is also negative [1]; the material may be said

to be left-handed because the vectors E, H, and k

form a left-handed system, i.e., the direction of

energy flow, given by E�H, is opposite to the di-

rection of the wave vector k. Pendry�s suggestion [2]

that a negative-index (or left-handed) medium

could be used to make a ‘‘perfect lens’’, and the first
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experimental demonstration [3] of negative-index

features of a ‘‘medium’’ consisting of a periodic

array of copper strips and copper split ring reso-

nators assembled into an interlocking lattice, have

sparked great interest in the subject and further

experimentation [4].

Negative-index media have various odd prop-
erties. The Doppler effect, for instance, is reversed.

Other familiar phenomena call for a reexamination

in the case n < 0. For example, it is well known

(and experimentally verified [5]) that, if local field

corrections are negligible, the spontaneous emis-

sion rate for an electric-dipole transition of fre-

quency x0 is A0 ¼ nðx0ÞA, where A is the free-space

Einstein A coefficient. How is this formula to be
interpreted, or modified, if nðx0Þ < 0?

In this paper we consider such examples using a

quantized-field description of the electromagnetic

field in a negative-index material, which we as-

sume to form an isotropic continuum and to be
ed.
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non-absorptive at frequencies of interest. The ap-

proach taken here might eventually prove useful

for the description of certain aspects of negative-

index materials, although at this point in the

evolution of the field it is not necessary for any

practical purposes known to us.
We first review a simple quantization procedure

[6] for radiation of frequency far fromany absorption

resonances of a dielectric medium. Poynting�s theo-
rem states that r � Sþ ou=ot ¼ 0 in the absence of

any currents, where S ¼ ðc=4pÞE�H and

ou
ot

¼ 1

4p
E � oD

ot

�
þH � oB

ot

�
: ð1Þ

We are interested in a narrow band of frequencies

about a frequency x, within which absorption is

negligible, and write

Eðr; tÞ ¼ Exðr; tÞe�ixt

¼
Z 1

�1
dDexðr;DÞe�iðxþDÞt; ð2Þ

where Ex is slowly varying in time compared with

expð�ixtÞ. Thus

Dðr; tÞ ¼
Z 1

�1
dD �ðxþ DÞexðr;DÞe�iðxþDÞt

�
Z 1

�1
dD �ðxÞ

�
þ D

d�

dx

�
exðr;DÞe�iðxþDÞt

� �ðxÞEðr; tÞ þ i
d�

dx
e�ixt oEx

ot
; ð3Þ

oD

ot
� �

oE

ot
þ x

d�

dx
oEx

ot
e�ixt

¼ �
oEx

ot

�
� ix�Ex þ x

d�

dx
oEx

ot

�
e�ixt

¼ d

dx
ð�xÞ oEx

ot

�
� ix�Ex

�
e�ixt; ð4Þ

where we use the assumption that only a narrow

band of frequencies is significant. Thus

E � oD
ot

� 1

4

d

dx
ð�xÞ o

ot
jExj2: ð5Þ

A similar calculation for H � oB=ot then yields [7]

ux ¼ 1

16p
d

dx
ð�xÞjExj2

�
þ d

dx
ðlxÞjHxj2

�
ð6Þ

for the field energy density at frequency x.
Now write

Eðr; tÞ ¼ CaðtÞFðrÞ; ð7Þ
where aðtÞ ¼ að0Þ expð�ixtÞ, FðrÞ is a (normalized)

mode function, and C is a constant to be chosen.

Maxwell�s equations imply

Bðr; tÞ ¼ �i
c
x
CaðtÞr � FðrÞ; ð8Þ

Dðr; tÞ ¼ �CaðtÞFðrÞ; ð9Þ

Hðr; tÞ ¼ � i

l
c
x
CaðtÞr � FðrÞ: ð10Þ

It then follows that the field energy associated with

frequency x is

Ux ¼
Z

d3r ux

¼ 1

16pl
jCj2jaðtÞj2 l

d

dx
ð�xÞ

�
þ �

d

dx
ðlxÞ

�

¼ n
8pl

jCj2jaðtÞj2 d

dx
ðnxÞ; ð11Þ

where n2ðxÞ ¼ �ðxÞlðxÞ.
Setting C ¼ ð4pl=ncÞ1=2, where c ¼ dðnxÞ=dx,

we have Ux ¼ 1
2
jaðtÞj2. Let us furthermore write

aðtÞ ¼ að0Þ expð�ixtÞ ¼ pðtÞ � ixqðtÞ, which im-

plies that _qq ¼ p, _pp ¼ �x2q, i.e., we have the

Hamilton equations of motion for a simple har-
monic oscillator. To quantize the field mode of

frequency x we quantize this harmonic oscillator,

replacing q and p by operators q̂q and p̂p satisfying

½q̂q; p̂p� ¼ i�h. The photon annihilation and creation

operators are then âa ¼ ð1=
ffiffiffiffiffiffiffiffiffi
2�hx

p
Þðp̂p � ixq̂qÞ and

âay ¼ ð1=
ffiffiffiffiffiffiffiffiffi
2�hx

p
Þðp̂p þ ixq̂qÞ, ½âa; âay� ¼ 1.

The electric field 1
2
½CaðtÞFðrÞ þ C�a�ðtÞFðrÞ�� is

similarly replaced by the operator

ÊEðr; tÞ ¼ 2p�hxl
nc

� �1=2

½âaðtÞFðrÞ þ âayðtÞFðrÞ�� ð12Þ

when we quantize. For our purposes it suffices
to work with the plane-wave modes FðrÞ ¼
ði=

ffiffiffiffi
V

p
Þek expðik � rÞ, where k ¼ nðxÞx=c and ek is

a unit polarization vector (k � ek ¼ 0):

ÊEðr; tÞ ¼ i
2p�hxl
ncV

� �1=2

âaðtÞeik�r
h

� âayðtÞe�ik�r
i
ek;

ð13Þ
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where we have taken ek to be real. Similarly, from

Eqs. (8)–(10), we write the quantized fields

B̂Bðr; tÞ ¼ i
2p�hlc2

xncV

� �1=2

âaðtÞeik�r
h

� âayðtÞe�ik�r
i
k� ek;

ð14Þ

D̂Dðr; tÞ ¼ i
2p�hxn�

cV

� �1=2

âaðtÞeik�r
h

� âayðtÞe�ik�r
i
ek;

ð15Þ

ĤHðr; tÞ ¼ i
2p�hc2

xnlcV

� �1=2

âaðtÞeik�r
h

� âayðtÞe�ik�r
i
k� ek:

ð16Þ
These expressions apply to a single-mode field

in a dispersive dielectric, provided the mode fre-

quency is far from any absorption resonance. In
particular, they apply to the case of a negative-

index material, where �ðxÞ, lðxÞ, and nðxÞ are all
negative. Note that c > 0 for a negative-index

medium (as well as for a positive-index medium)

under the assumptions we have made. To see this,

write n ¼ �
ffiffiffiffiffiffiffiffiffiffi
j�jjlj

p
(�; l < 0), in which case

c ¼ nþx
dn
dx

¼ �
ffiffiffiffiffiffiffiffiffiffi
j�jjlj

p
�x

2

ffiffiffiffiffiffi
j�j
jlj

s
djlj
dx

�x
2

ffiffiffiffiffiffi
jlj
j�j

s
dj�j
dx

¼ �1

2

ffiffiffiffiffiffi
j�j
jlj

s
jlj

�
þx

djlj
dx

�
� 1

2

ffiffiffiffiffiffi
jlj
j�j

s
j�j

�
þx

dj�j
dx

�

¼ 1

2

ffiffiffiffiffiffi
j�j
jlj

s
d

dx
ðlxÞ þ 1

2

ffiffiffiffiffiffi
jlj
j�j

s
d

dx
ð�xÞ; ð17Þ

which is positive because dðlxÞ=dx and dð�xÞ=dx
are positive. The latter conditions, which ensure

that the classical field energy Ux is positive, follow

from general dispersion relations based on cau-

sality [7].

The field energy (11) becomes, on quantization,

ĤHfield ¼
n

8pl
4pl
nc

� �
ðp̂p2 þ x2q̂q2Þc

¼ �hxðâayâaþ 1=2Þ: ð18Þ
The operator corresponding to the (cycle-aver-

aged) Poynting vector, similarly, is

ŜS ¼ �hc2

ncV
ðâayâaþ 1=2Þek � ðk� ekÞ: ð19Þ

Writing

k ¼ nx
c

z; ð20Þ

where z is the unit vector pointing in the z direc-

tion, we have

ŜS ¼ �hcx
cV

ðâayâaþ 1=2Þz ¼ �hxvg
V

ðâayâaþ 1=2Þz

¼ zvgðĤHfield=V Þ; ð21Þ

where the (scalar) group velocity vg ¼ c=c. Eqs.

(20) and (21) show that, in a negative-index me-

dium, the Poynting vector and the k vector point

in opposite directions; E, H, and k define a left-

handed triad.
Consider an excited atom of mass m moving

with velocity v in a negative-index medium. For

the initial state we take a product of a wave

function / expðim v � r=�hÞ describing the center-of-

mass motion, the state j/ii of energy Ei of the

atom, and the vacuum state j0i of the field. For the
final state we take a product of the center-of-mass

wave function / expðim v0 � r=�hÞ, the ground state
j/fi of energy Ef for the atom, and the field state

j1ki in which there is a single photon with wave

vector k and frequency x. The probability ampli-

tude for the transition jWii ! jWfi involves a

matrix element proportional toZ
dt exp

i

�h
1

2
mv02

��
� 1

2
mv2

�
t
�

�
Z

d3r exp
�
� i

�h
ðmv0 � mvÞ � r

�

� h/f jh1kjr̂rðtÞâaykðtÞeik�rj0ij/ii; ð22Þ
where r̂r is the lowering operator for the internal

atomic states and âayk is the photon creation oper-

ator for the field mode of frequency x and wave

vector k. Since the (free) evolution of these oper-

ators is r̂rðtÞ ¼ r̂rð0Þ exp½�iðEi � EfÞ� and âaykðtÞ ¼
âaykð0Þ expðixtÞ, and h/f jh1kjr̂rð0Þâaykð0Þj/iij0i ¼ 1,

the transition amplitude is proportional to
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Z
dt exp

i

�h
1

2
mv02

��
� 1

2
mv2 þ Ef � Ei þ �hx

�
t
�

�
Z

d3r exp
�
� i

�h
ðmv0 � mvþ �hkÞ � r

�
: ð23Þ

The time integral implies energy conservation

1

2
mv02 þ �hx ¼ 1

2
mv2 þ �hx0; ð24Þ

where x0 ¼ ðEi � EfÞ=�h is the transition frequency

of the (stationary) atom. The integral over space

implies momentum conservation

mv0 ¼ mv� �hk: ð25Þ
Combining (24) and (25), and ignoring terms in-

volving c�2 in this nonrelativistic treatment, we

obtain

x ¼ x0 1
�

þ n
c
v cos h

	
; ð26Þ

where h is the angle between v and z. Thus, as

deduced by Veselago from classical considerations,

the Doppler effect is reversed in a negative-index
medium: if the source is moving towards the de-

tector, the emitted radiation radiation is observed

to have a smaller frequency. Eq. (25) implies that

recoil imparted to the atom upon emission of the

photon will be in the same direction as the Poyn-

ting vector of the emitted field in a negative-index

medium.

The multimode generalization of (13), for in-
stance, is

ÊEðr; tÞ ¼ i
X
kk

2p�hxlx

nxcxV

� �1=2

� âakkðtÞeik�r
h

� âaykkðtÞe�ik�r
i
ekk: ð27Þ

k labels the polarization of mode k; k (k � ekk ¼ 0,

k ¼ 1; 2).
Consider the rate of spontaneous emission of an

atom in a negative-index medium. We assume the

most important case, that of an electric-dipole

transition. (The result will apply equally well to the
radiation rate of a dipole antenna.) The coupling

constant for the field mode k; k and the atomic

transition with electric dipole matrix element d is

V ðxÞ ¼ �i
2p�hxklk

nkckV

� �1=2

d � ekk: ð28Þ
Fermi�s golden rule then implies the spontaneous
emission rate

2p
�h
jV ðx0Þj2qeðx0Þ; ð29Þ

where x0 is the transition frequency and qe is the

density (in energy) of final states

qeðx0Þ�hdx ¼ V

ð2pÞ3
d3k ¼ V

ð2pÞ3
k2 dXk dk

¼ V
8p3c3

n2ðxÞx2 d

dx
½nðxÞx�dxdXk; ð30Þ

where dXk is the differential element of solid angle

about k. The rate of spontaneous emission into

all solid angles and polarizations is then, from

(28)–(30),

A0 ¼ 2p
�h

2p�hx0lðx0Þ
nðx0Þcðx0ÞV

Vn2ðx0Þx2
0

8p3c3�h
cðx0Þ

�
X
k

Z
dXkjd � ekkj2 ¼ nðx0Þlðx0ÞA; ð31Þ

where A ¼ 4jdj2x3
0=3�hc

3 is the free-space radiation

rate. Eq. (31) differs from the familiar result cited

earlier by the factor lðx0Þ, which ensures that

A0 > 0 in a negative-index medium.

Absorption and stimulated emission are like-
wise affected. The Einstein B coefficient is calcu-

lated in the same manner as A0 to be

B0 ¼ lðx0Þ
cðx0Þnðx0Þ

B; ð32Þ

where B is the coefficient for an atom in free space.

Obviously B0 > 0 for both positive- and negative-
index media. This generalizes the expression

B0 ¼ B=n2ðx0Þ that appears frequently in the lit-

erature [8]. The latter is seen to be applicable if

dispersion is negligible [cðx0Þ ! nðx0Þ] and

lðx0Þ � 1. The expressions given here for A0 and B0

also generalize the results obtained in Reference

[6], where it was assumed that the host medium is

nonmagnetic (l ¼ 1).
The spectral density of thermal radiation may

be obtained in the familiar way by assuming that

the absorption and emission rates for a transition

of frequency x are equal in thermal equilibrium;

thus
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qðxÞ ¼ A0=B0

e�hx=kT � 1
¼ cðxÞn2ðxÞA=B

e�hx=kT � 1

¼ cðxÞn2ðxÞ�hx3=p2c3

e�hx=kT � 1
; ð33Þ

as obtained in [6].

We have shown that some of the unusual

properties of a negative index of refraction mate-

rial suggested by a classical analysis are verified

when analyzed in terms of the quantized electro-

magnetic field. In the derivation, we have assumed

the presence of a spectral band in which there is no
absorption and �ðxÞ, lðxÞ and nðxÞ are all nega-

tive. There are additional interesting phenomena

that arise in the quantum case that we did not

consider in this brief survey. Some interesting

considerations involve the role of evanescent

waves, for example, in focusing elements, in

internal reflection, and in the propagation of

radiation in photonic crystals.
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