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Abstract

In his autobiography Casimir barely mentioned the Casimir effect, but
remarked that it is “of some theoretical significance” [1]. We will describe
some aspects of Casimir effects that appear to be of particular significance
now, more than half a century after Casimir’s famous paper [2].

1 Introduction

Let us first recall that Casimir discovered his effect as a byproduct of some ap-
plied industrial research in the stability of colloidal suspensions used to deposit
films in the manufacture of lamps and cathode ray tubes. In the 1940s J.T.G.
Overbeek at the Philips Laboratory studied the properties of suspensions of
quartz powder, and experiments indicated that the theory of colloidal stability
he had developed with E.J.W. Verwey could not be entirely correct. Better
agreement between theory and experiment could be obtained if the interparticle
interaction somehow fell off more rapidly at large distances than had been sup-
posed. Overbeek suggested that this might be related to the finite speed of light,
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and his suggestion prompted his co-workers Casimir and Polder to reconsider
the theory of the van der Waals interaction with retardation included. They
concluded that Overbeek was right: retardation causes the interaction to vary
as r−7 rather than r−6 at large intermolecular separations r.
Intrigued by the simplicity of the result, Casimir sought a deeper under-

standing. A conversation with Bohr led him to an interpretation in terms of
zero-point energy. Then he went further with the idea of zero-point energy and
showed that two perfectly conducting parallel plates should be attracted to each
other as a consequence of the change they create in zero-point field energy:

Summer or autumn 1947 (but I am not absolutely certain that it

[was] not somewhat earlier or later) I mentioned my results to Niels Bohr,

during a walk. That is nice, he said, that is something new. I told him

that I was puzzled by the extremely simple form of the expresssions for

the interaction at very large distance and he mumbled something about

zero-point energy. That was all, but it put me on a new track.

I found that calculating changes of zero-point energy really leads to

the same results as the calculations of Polder and myself ...

On May 29, 1948 I presented my paper “On the attraction between

two perfectly conducting plates” at a meeting of the Royal Netherlands

Academy of Arts and Sciences. It was published in the course of the year

... [3]

At about the same time the observation of the Lamb shift led to the in-
terpretation of that effect in terms of changes in zero-point energy, or vacuum
fluctuations, but Casimir’s thinking was independent of this development:

... I was not at all familiar with [that work]. I went my own, somewhat

clumsy way ... I do not think there were outside influences ... [3].

The Casimir force between conducting plates is a more palpable consequence
of zero-point field than, for instance, the Lamb shift. It is perhaps for this rea-
son that it now appears to be the most widely cited example of how vacuum
fields and their fluctuations can have observable manifestations. The current
interest owes much to recent experiments that unambiguously confirm Casimir’s
prediction and allow the experimental investigation of such things as finite con-
ductivity and temperature corrections to the Casimir force between plates [4],
[5].
The experimental verification of Casimir’s prediction is often cited as proof

of the reality of the vacuum energy density of quantum field theory. However,
Casimir effects have also been derived and interpreted in terms of source fields in
both conventional [6] and nonconventional [7] quantum electrodynamics. Vari-
ous other, perhaps less fundamental interpretations are also possible, as Casimir
himself observed:

The action of this force [between parallel plates] has been shown
by clever experiments and I think we can claim the existence of the
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electromagnetic zero-point energy without a doubt. But one can
also take a more modest point of view. Inside a metal there are
forces of cohesion and if you take two metal plates and press them
together these forces of cohesion begin to act. On the other hand
you can start with one piece and split it. Then you have first to
break chemical bonds and next to overcome van der Waals forces of
classical type and if you separate the two pieces even further there
remains a curious little tail. The Casimir force, sit venia verbo, is
the last but also the most elegant trace of cohesion energy [8].

Casimir effects result from changes in the ground-state fluctuations of a
quantized field that occur due to the boundary conditions. Casimir effects
occur for all quantum fields and can also arise from the choice of topology. In
the special case of the vacuum electromagnetic field with dielectric or conductive
boundaries, various approaches suggest that Casimir forces can be regarded as
macroscopic manisfestations of many-body retarded van der Waals forces [6],
[9].
Zero-point field energy density is a simple and inexorable consequence of

quantum theory, but it brings puzzling inconsistencies with another well veri-
fied theory, general relativity. The total energy density of the vacuum would be
expected to provide a cosmological constant of the type introduced by Einstein
in order to have static solutions of his field equations. The predicted electro-
magnetic quantum vacuum energy density is enormous (about 10114 J/m3 or,
in terms of mass, 1095 g/cm3 if the Planck length of 10−35 m is used to provide
a cut-off), and for an infinite flat universe would imply an outward zero-point
pressure that would rip the universe apart [10]. Astronomical data, on the other
hand, indicate that any such cosmological constant must be ∼ 4 eV/mm3, or
10−29 g/cm3 when expressed as mass [11]. The discrepancy between theory and
observation is about 120 orders of magnitude, arguably the greatest quantitative
discrepancy between theory and observation in the history of science [12], [13]!
There are numerous approaches to solve this “cosmological constant problem,”
such as renormalization, supersymmetry, string theory, and quintessence, but
as yet this remains an unsolved problem.
The Casimir effect is important as well in connection with other aspects

of cosmology and space-time physics. Fluctuations in vacuum field energy are
believed by cosmologists to be responsible for the origin of the universe. These
fluctuations may have provided the primordial irregularities required to form
stars and galaxies, and may be the source of the cosmic temperature fluctuations
uncovered by the COBE satellite in 1992.
The possibility of a “traversable wormhole” tunnel in space-time [14] is at-

tributable to the modification of the vacuum by the Casimir effect, and in par-
ticular to the negative energy density between the caps of the wormhole. There
is an interesting question, however, about whether the positive energy density
associated with the caps will result in a net energy density that is insufficiently
negative (Visser 1996, pp 121-6).
Observable consequences of focusing vacuum fluctuations with a parabolic
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reflector have recently been predicted [15]. Casimir effects can also arise from
dynamical constraints, such as moving mirrors or varying gravitational fields,
that alter the vacuum. A sudden displacement of a reflecting boundary, for
instance, is not communicated to a point at a distance d from the boundary
until a time d/c, and a consequence of this is that radiation is generated, i.e.,
particles are created. The effect is very weak unless enormous accelerations
are imagined. However, if one of the plates in the original Casimir example is
made to oscillate resonantly with the photon propagation time in the cavity,
there is an amplification of the effect that might make the radiation observable
[16]. Many of the recent predictions of vacuum-field effects are, to say the
least, not readily observable [17], [18]. The significance of Casimir’s work in
this context is that it makes an experimentally verifiable prediction based on
the quantum vacuum, and thereby lends support to these other predictions that
rely on quantum vacuum theory.
Another vacuum effect that has received much attention is the Unruh-Davies

effect: a detector (or atom) moving with uniform acceleration in the vacuum
responds as if it is at rest in a thermal field of temperature T = h̄a/2πkc, where
a is the proper acceleration and k is Boltzmann’s constant. Vacuum fluctuations
are in effect promoted to thermal fluctuations. Unfortunately the accelerations
required for one to seriously contemplate an experimental observation of the ef-
fect are prohibitively large. (A temperature 1 pK corresponds to an acceleration
of 2.5× 108 m/sec2.)

2 Vacuum Friction

Consider instead the case of an atom moving in an isotropic thermal field. In
this case there is an effect that depends on the atom’s velocity : an atom with
velocity v experiences a drag force

F = −
µ
h̄ω

c2

¶
(p1 − p2)B12

µ
ρ(ω)− ω

3

dρ

dω

¶
v , (1)

where ω is the transition frequency between the lower state 1 and the upper
state 2, p1, p2 are the state occupation probabilities, B12 is the Einstein B coef-
ficient for absorption, and ρ(ω) is the spectral energy density of the field. (For
simplicity we restrict ourselves to two nondegenerate energy levels of the atom.)
This result was obtained by Einstein [19], who showed that the increase in the
atoms’ kinetic energy upon absorption and emission of radiation is balanced on
average by the drag force if the equilibrium ρ(ω) is the Planck spectrum.

What does this have to do with Casimir effects or the vacuum? Let us note
first that, for the vacuum spectral energy density ρ0(ω) = h̄ω

3/2π2c3, the drag
force vanishes. This is as it should be: Lorentz invariance of the vacuum does
not allow a velocity-dependent force. But what happens if we arrange for the
zero-temperature spectral density of the electromagnetic field to be different
from the ρ0(ω) of infinite free space?
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One way to obtain a zero-temperature spectral density different from ρ0(ω),
of course, is to introduce conducting surfaces. Local changes in mode density
and therefore vacuum energy density are induced by the presence of curved
surfaces, and, depending on whether the curvature is positive or negative, the
force between the surface and the particle may be repulsive or attractive [20].
Indeed, whenever there is an inhomogeneous vacuum energy density, there will a

net force on a polarizable neutral particle given by 1
2α
−→∇ hE(x)2i. The simplest

example of using a surface to alter vacuum modes is a perfectly conducting,
infinite wall. The change in the vacuum field energy due to the wall produces
in this case the well-known Casimir-Polder interaction: for sufficiently large
distances d from the wall this interaction is V (d) = −3αh̄c/8πd4, where α is the
static polarizability of the (ground-state) atom. This effect has been accurately
verified in the elegant experiments of Sukenik et al [21].
Now let the atom move parallel to the wall with velocity v. In this case, pro-

vided the wall is not an idealized perfect conductor, there is a velocity-dependent
force F (v) acting along the direction of motion of the atom. This force can be as-
sociated physically with the effect of the finite conductivity of the wall material
on the image field of the atom. The functional form of F (v) depends sensitively
on how the dielectric function of the wall material varies with frequency [22].
Pendry [23] has discussed the possibility of a frictional force when two infinite
parallel mirrors separated by a fixed distance are in relative motion, and finds
“large frictional effects comparable to everyday frictional forces provided that
the materials have resistivities of the order of 1 mΩ and that the surfaces are
in close proximity.” As in the case of an atom moving with respect to a wall,
the form of the frictional force depends sensitively on the dielectric function.
In fact, a Gedanken experiment suggests that lateral Casimir forces are present
even for ideal finite conducting parallel planes, otherwise it would be possible
to construct a device that would extract a net positive energy from the vacuum
in each cycle of its operation [24].

3 Technological Implications

We have already alluded to what may be some profoundly important aspects
of the quantum vacuum, and have noted that the reality of various Casimir
effects lends credibility to predictions of various vacuum field effects that lie
fantastically beyond the pale of experiment. Of course Casimir effects are also
of interest in their own right and, if anything, this interest appears to be grow-
ing. Moreover, recent work — including that on vacuum friction — suggests that
Casimir effects may be of some practical significance.
Casimir effects will be significant in microelectromechanical systems (MEMS)

if (when) further miniaturization is realized [25]. Smaller distances between
MEMS components are desirable in electrostatic actuation schemes because
they permit smaller voltages to be used to generate larger forces and torques.
MEMS currently employed in sensor and actuator technology have compo-
nent separations on the order of microns, where Casimir effects are negligible.
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However, the Casimir force per unit area between perfectly conducting plates,
F = −π2h̄c/240d4, increases rapidly as the separation d is decreased; at a sep-
aration of 10 nm, F ∼ 1 atm.
Serry et al [25] have considered an idealized MEMS component resembling

the original Casimir example of two parallel plates, except that one of the plates
is connected to a stationary surface by a linear restoring force and can move
along the direction normal to the plate surfaces. The Casimir force between the
two plates, together with the restoring force acting on the moveable plate, results
in an “anharmonic Casimir oscillator” exhibiting bistable behavior as a function
of the plate separation. This suggests the possibility of a switching mechanism,
based on the Casimir effect, that might be used in the design of sensors and
deflection detectors [25]. The analysis also suggests that the Casimir effect might
be responsible in part for the “stiction” phenomenon in which micromachined
membranes are found to latch onto nearby surfaces.
An experimental demonstration of the Casimir effect in a nanometer-scale

MEMS system has recently been reported [26]. In the experiment the Casimir
attraction between a 500 µm-square plate suspended by torsional rods and a
gold-coated sphere of radius 100 µm was observed as a sharp increase in the
tilt angle of the plate as the sphere-plate separation is reduced from 300 nm
to 75.7 nm. This “quantum mechanical actuation” of the plate suggests “new
possibilities for novel actuation schemes in MEMS based on the Casimir force”
[26].

4 Complications and Approximations

Calculations of Casimir forces for situations more complicated than two parallel
plates are notoriously difficult, and one has little intuition even as to whether
the force should be attractive or repulsive for any given geometry. The fact that
the Casimir force on a perfectly conducting spherical shell is repulsive, as first
discovered by Boyer [27], surprised even Casimir, who presumed that the force
would be attractive [28]. Since Boyer’s work a fairly large literature has grown
around problems of calculating Casimir forces for perfectly conducting spheres,
cubes, cylinders, wedges, and other geometries.
In the case of dielectrics the situation is even more complicated, as can be

appreciated from the Lifshitz theory for the “simple” example of two parallel
walls (see, for instance, Milonni 1994, pp 219-33). Computation of the numerical
value of the force per unit area requires a knowledge of the complex refractive
index as a function of frequency as well as the deviation from perfect surface
smoothness; therefore, as discussed by Lamoreaux [29] and Klimchitskaya et
al [30], for instance, accurate computations require auxiliary measurements of
various properties of the surfaces.
It would be very useful to have approximate methods for the calculation of

Casimir forces for arbitrarily shaped bodies. The obvious and simplest approx-
imation is to add up pairwise van der Waals forces [31]. Consider, for instance,
an atom A at a distance d from a half-space of N atoms per unit volume, and
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suppose that all the atoms are identical and that d is large enough that the in-
teraction between A and each atom of the “wall” is the retarded van der Waals
interaction V (r) = −23h̄cα2/4πr7. Adding the pairwise interactions between A
and all the wall atoms, one easily finds

V (d) = −23
40

h̄cα

d4
Nα . (2)

Now if we use the Clausius-Mossotti relation between Nα and the dielectric
constant ², and assume that the limit ² → ∞ should correspond to a perfectly
conducting wall, then the potential energy of A when it is at a distance d from
a perfectly conducting plate should be

V (d) = − 69

160π

αh̄c

d4
(3)

in the pairwise approximation. This is 15% larger than the Casimir-Polder
result cited earlier. A similar calculation of the pairwise van der Waals force
per unit area between two parallel walls gives

F (d) = − 207h̄c

640π2d4
, (4)

which is 20% smaller than the Casimir result [2].
In light of the stark simplicity of the pairwise approach, these results are

certainly encouraging. However, these two examples pretty much exhaust the
supply of known, exact results for the Casimir interaction of disconnected ob-
jects. Let us consider therefore some known results for connected objects.
We have already alluded to the Casimir energy for a perfectly conducting

spherical shell. A calculation of the pairwise van der Waals energy of a spherical
ball of radius a gives V (a) = (207h̄c/1536πa)[(² − 1)/(² + 2)]2 if we ignore
dispersion and assume again that Nα and ² are related by the Clausius-Mossotti
formula. Thus lim²→∞ V (a) = .043h̄c/a for a spherical ball is of the same order
as the exact result (.09h̄c/a) for the conducting spherical shell [27] and gives
the correct, “counter-intuitive” sign. (Note: We disregard infinities associated
with the divergence of the van der Waals interaction when the intermolecular
spacing goes to zero, as assumed in our continuum model. That is, we retain
only what Barton [32] refers to as the “pure Casimir term.”)
Unfortunately the surprising degree of accuracy of this (relatively) simple

approach in these examples seems fortuitous. For the case of an infinitely long
conducting cylindrical shell of radius a, the pairwise approach gives a Casimir
energy of zero, whereas several authors have found that there is an attractive
force. (See Barton 2000, Reference [32], and references therein.) In the case of
a conducting cube of side a the exact calculation yields V (a) = .092/a, whereas
Barton finds that the pairwise approximation gives an attractive Casimir term
[32]. (After initially obtaining a repulsive force, and checking the laborious
calculations after learning of Barton’s result, we have confirmed that the “pure
Casimir term” is indeed attractive in the pairwise approximation.)
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Ambjorn and Wolfram [33] remarked that “[the pairwise approximation] ...
in the case of two parallel planes ... leads to a correct Casimir energy,” but that
“this result is probably fortuitous.” They support this claim by remarking that,
“according to [the pairwise approximation] the Casimir forces between conduct-
ing surfaces would ... always be attractive,” whereas for the cube, for instance,
the actual Casimir force is repulsive, as they showed. We note, however, that
the pairwise approximation for the sphere gives in fact a repulsive force for the
pure Casimir term.
It appears then that there is still no reliable approximation to the evaluation

of Casimir forces for arbitrarily shaped bodies. It is worth noting, however, that
Schaden and Spruch [34] have developed a semiclassical approach that might
lend itself to workable approximations for arbitrary geometries.

5 Acknowledgement

In this tribute to Casimir we have tried to convey our strong belief that, after
all these years, there is still much to appreciate and learn about Casimir effects.
We are grateful not only to Casimir but to our many colleagues whose work has
kept the subject alive and well. For the discussion in the final section we are
particularly grateful to Gabriel Barton for sharing his results with us prior to
their publication. GJM would like to thank the NASA Breakthrough Propulsion
Physics program for its support of this work.

References

[1] Casimir H B G 1983 Haphazard Reality: Half a Century of Science (New
York: Harper and Row) p 247

[2] Casimir H B G 1948 On the attraction between two perfectly conducting
plates Proc. K. Ned. Akad. Wet. 51 793-5

[3] Casimir H B G 1992 private communication to Milonni P W

[4] Lamoreaux S K 2000 Experimental verifications of the Casimir attractive
force between solid bodies Comm. Mod. Phys. D: At. Mol. Phys. 2 247-61

[5] Roy A, Lin C-Y, and Mohideen U 2000 Measurement of the Casimir force
using an atomic force microscope Comm. Mod. Phys. D: At. Mol. Phys. 2
263-73

[6] Milonni P W 1994 The Quantum Vacuum. An Introduction to Quantum
Electrodynamics (San Diego: Academic)

[7] Schwinger J, DeRaad Jr L L, and Milton K A 1978 Casimir effect in di-
electrics Ann Phys (NY) 115 1-23

8



[8] Casimir H B G 1999 Some remarks on the history of the so-called Casimir
effect The Casimir Effect 50 Years Later ed M Bordag (Singapore: World
Scientific), pp 3-9

[9] Power E A and Thirunamachandran 1994 T Zero-point energy differences
and many-body dispersion forces Phys. Rev. A50 3929-39

[10] Visser M 1996 Lorentzian Wormholes: From Einstein to Hawking (New
York: American Institute of Physics) pp 81-87

[11] Ostriker J and Steinhardt P 2001 The quintessential universe Scientific
American 284 46-53

[12] Weinberg S 1989 The cosmological constant problem Rev. Mod. Phys. 61
1-22

[13] Adler R J, Casey B, and Jacob O C 1995 Vacuum catastrophe: an ele-
mentary exposition of the cosmological constant problem Am. J. Phys. 63
620-26

[14] Morris M S and Thorne K S 1988 Wormholes in spacetime and their use
for interstellar travel: a tool for teaching general relativity Am. J. Phys.
56, 395-412

[15] Ford L and Svaiter N F 2000 Focusing vacuum fluctuations Los Alamos
e-Print Archive quant-ph 0003129 v2 1-20

[16] Lambrecht A, Jaekel M, and Reynaud S 1996 Motion induced radiation
from a vibrating cavity Phys. Rev. Lett. 77 615-18

[17] Scharnhorst K 1990 On propagation of light in the vacuum between plates
Phys. Lett. B236 354-9

[18] Milonni P W and Svozil K 1990 Impossibility of measuring faster-than-c
signalling by the Scharnhorst effect Phys. Lett. B248 437-8

[19] Einstein A 1917 Zur Quantentheorie der Strahlung Phys. Zs. 18 121-8

[20] Deutsch D and Candelas P 1979 Boundary effects in quantum field theory
Phys. Rev D20 3063-80

[21] Sukenik C I, Boshier M G, Cho D, Sandoghdar V, and Hinds E A 1993
Measurement of the Casimir-Polder force Phys. Rev. Lett. 70 560-3

[22] Barton G 2000 Atomic shifts near absorptive mirrors Comm. Mod. Phys.
D: At. Mol. Phys. 2 301-7

[23] Pendry J B 1997 Shearing the vacuum — quantum friction J. Phys.: Con-
dens. Matter 9 10301-20

9



[24] Maclay J 2000 A design manual for micromachines using Casimir forces:
preliminary considerations Proceedings of STAIF-2000 (Space Technology
and Applications International Forum) ed M El-Genk (New York: Ameri-
can Institute of Physics)

[25] Serry F M, Walliser D, and Maclay G J 1995 The anharmonic Casimir
oscillator (ACO) — the Casimir effect in a model microelectromechanical
system J. Microelectromechanical Syst. 4 193-205

[26] Chan H B, Aksyuk V A, Kleiman R N, Bishop D J, and Capasso F 2001
Quantum mechanical actuation of microelectromechanical systems by the
Casimir force Science 291, 1941-44

[27] Boyer T H 1968 Quantum-electromagnetic zero-point energy of a conduct-
ing spherical shell and the Casimir model for a charged particle Phys Rev
174 1764-76

[28] Casimir H B G 1953 Introductory remarks on quantum electrodynamics
Physica 19 846-49

[29] Lamoreaux S K 1999 Calculation of the Casimir force between imperfectly
conducting plates Phys Rev A59 R3149-53

[30] Klimchitskaya G L, Roy A, Mohideen U, and Mostepanenko V 1999 Com-
plete roughness and conductivity corrections for Casimir force measurement
Phys. Rev A60 3487-95

[31] Milonni P W and Shih M L 1992 Casimir forces Contemp Phys 33 313-22

[32] Barton G 2001 Perturbative Casimir energies of dispersive spheres, cubes,
and cylinders J. Phys. A.: Mathematical and General 34 4083-114

[33] Ambjorn J and Wolfram S 1983 Properties of the vacuum. I. Mechanical
and thermodynamic Ann Phys (NY) 147 1-32

[34] Schaden M and Spruch L 2000 Semiclassical evaluation of Casimir effects
Comm. Mod. Phys. D: At. Mol. 2 275-84

10


