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Vacuum Stress between Conducting Plates: An Image Solution*

The zero-point fluctuations of the electromagnetic field give rise to an attractive force between t\VO per-

fectly conducting parallel plates, the Casimir force. We discuss the structure of the electromagnetic stress-
energy tensor in the region between the plates for finite temperatures as ~.ell as for the zero-temperature
limit, and we describe the relatioru;hip of its components to the thermodynamic variables of the radiation
field. The stress-energy tensor is defined SO that infinite quantities never appear, and it is explicitly com-
puted with the aid of an image-source construction of the Green's function. The finite-temperature case
involves both an infinite set of spatial images and an infinite sum of temperature-dependent images.

I. INTRODUCTION

T HE mutual electrical polarization of material
bodies brought about by quantum-mechanical

fluctuations results in an attractive force: At short
distances this is the van der Waals interaction; at large
distances the retarded propagation of the electromag-
netic field becomes important. In this case, the force
can be computed from the total energy of the system in
interaction with the quantized electromagnetic field}
If the polarizability of the materials is extremely large,
they behave as perfect conductors, and the interaction
force can be calculated from the energy of the quantized
electromagnetic field alone, which now exists only out-
side the bodies. In this spirit, Casimir2 obtained the
force between two parallel, perfectly conducting,
infinite plates at zero temperature. In order to secure a
finite result from the usual quadratically divergent
expression for the vacuum fluctuation energy, it was
necessary to introduce a strong convergence factor in
the cavity-mode sum, to discard the contribution to t4e
energy which is independent of the plate separation, and
then to let the convergence factor approach unity.

We shall compute the complete electromagnetic
stress-energy tensor of Casimir's problem for finite
temperature3 as well as for the zero-temperature limit.
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We define the stresS-energy tensor in tenns of a suitable
limit of a bilinear field combination with finite spatial
separation. This definition automatically removes the
usual vacuum infinity, and we avoid the explicit
manipulation of infinite quantities. The calculation of
the stress-energy tensor is perfonned using an image-
source construction of the electromagnetic field two-
point Green's function. At zero temperature, this
involves an infinite sequence of image sources dis-
placed in space in a manner akin to the familiar electro-
static image solution of a point charge placed between
two conducting plates. The Green's function for a
finite-temperature ensemble can be represented by
adding for each spatial image an infinite sum of tem-
perature images displaced in imaginary time. In
addition to calculating the stress-energy tensor, we dis-
cuss its structure in detail-in particular, the relation-
ship of its components to the various thennod}'Damic
variables of the radiation field.

The organization of this paper is perhaps uncon-
ventional: ".e present our major results in Sec. 2,
deferring explicit calculations until Secs. 3 and 4.
In Sec. 2, after properly defining the stress-energy
tensor, we consider its structure at zero temperature.
In this case, the conditions that the stress tensor be
divergence-free and traceless, together with the simple
geometry of the problem and the use of dimensional
arguments, completely detennine the whole tensor in
tenns of a single pure number. Using this result, we
can directly verify the principle of virtual work-that
the pressure on a conducting plate, as computed by the
spatial stress tensor, agrees with the pressure implied
by the variation of the energy with plate separation.
We then generalize these considerations to the 1inite-
temperature case. We show that the components of the
stress tensor parallel to the surface of the plates are
identical with the Helmholtz free energ)' per unit volume
of the radiation field. By identifying the pressure on the
plates with the spatial variation of the free energy at
constant temperature, we obtain all the components of
the stress-energy tensor in tenns of a single function of
a dinlensionless variable: the temperature times the
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t H. B. G. Casimir, Koninkl. Ned. Akad. \\.etenschap. Proc.
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the results of Lifshitz are in error. The results of Sauer are in
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accord with the later work of Mehra and ".jth those presented
in this paper.
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distance bet\veen the plates:\Ve quote-the value of this
function, which is obtained in Sec. 4, and discuss the
limiting cases of low and high temperatures. Finally,
we discuss briefly the structure of the electromagnetic
stress-energy tensor outside a perfec'tly conducting
sphere at zero temperature.

In Sec. 3 we define the electromagnetic field two-
point Green's function and then compute this function
in terms of an infinite sum of image sources. The Green's
function is generalized in Sec. 4 to a finite-temperature
ensemble and is constructed in terms of a doubly infinite
sum of images in both space and imaginary time.

2. NATURE OF THE STRESS

The quantum electrod)-nariiic stress-energ). tensor is,
fomlally, the E --10 O limit of the bilinear field
combination.

T'.'(X,E) =F'.A(X+iE)F'A(X-!E)

-tg'.'FAr(X+tE)F;\r(X-lE) .(1)

This limit, in fact, does not exist, because its vacuum
expectation value diverges as ( e2)-2. Indeed, in an
infInitely extended vacuum, the entire expectation
value behaves as (E2)-2, reflecting the masslessness of
the photon. \\'e can achieve a finite and well-defined
stress-energ). operator by recognizing the homogeneous
(E2)-2 character of this divergence, which we can there-
fore remove with the definition

We turn now to toe nature of the-stress between two
perfectly conducting, parallel, infinite plates separated
by a distance a. We orient the coordinate frame so
that one plate is at Z=O while the other is at z=a.
We shall have occasion to use the unit four-vector
f."= (0,0,0,1). The time axis is specified by n"= (1,0,0,0).

We will first consider t,be situation at zero tempera-
ture. In this case, the Green's function can be con-
structed with an infinite sequence of. current-pulse
image sources displaced along the z axis, but which
exist at a common infinitesimal time duration. That
there is no retardation in time between the various
image sources is a result of the special symmetry of the
parallel-plate geometry , which has pairs of sources at
equal distances from a given plate so that no retarda-
tion is required for their radiation pulses to reach the
plate simultaneously. Accordingly, the Green's func-
tion depends upon only the single four-vector 2", and
the ground-state expectation value of the stress-energy
tensor must be constructed from 2'.z' and g"' with no
additional reference to the time-axis normal n". The
traceless nature of the stress-energy tensor, together
with the symmetry of the problem, requires that

(TII'(X) )(O) = (tg'.'-zllz')f(z) .(5)

The function f(z) must, in fact, be constant to make the
stress-energy tensor free of divergence. Its dimension,
energy per unit volume, gives the final structure

(TII')(O) = (tg'.'-zllz')(hc/a4)"y , (6)

in which "y is a pure number. The explicit construction
of the Green's function in Sec. 3 gives, of course, pre-
cisely this result and supplies the numerical value

Tji'(x) =lim

0 (2)

1 ~

-}: l~= (1/27/"2)r(4) =7/"2/180

27/"2 1-1
(7)"(=-

The energy density between the plates

(T"O)(0) = -t(hc/a4)'Y= -(r/720)(hc/a4) (8)

and pressure on one of the plates

(7'33) (0) = -i (hc/a4)'Y= -(r/240)(hc/a4) (9)

agree with the results obtained by Casimir.2 In par-
ticular, the pressure on a plate is negative, correspond-
ing to an attractive force. It follows from the general
structure of the stress-energy tensor (6) that the calcu-
lation of this pressure from the spatial stress agrees

trace of a spin-zero, massless meson field stress tensor

T~.=a~~a.~-g~iaAcj;a~~
does not vanish. The connection depends upon the special
coordinate transformation character of the electromagnetic field,
where the stress tensor can be identified by the response of the
Lagrange function to a general coordinate variation \\'ith the field
strength transforming as a Colltravariant, rank-2 tensor density.
In this special circumstance, a scale transformation is a particular
case of a general coordinate transformation, and thus the response
is the trace of the stress tensor .

In our applications using the irnage-source construction
of the Green's functions, this definition is tantamount
to simply discarding that part of the Green's function
corresponding to the true source-the infinitely ex-
tended vacuum contribution, Once this is done, it
follo\vs from the structure of the Green's function that
there are no infinities in the stress tensor, even when it
is evaluated at the surface of a plate,

Except at boundaries, the electromagnetic field is
free, and thus the stress-energ}' tensor has a vanishing
divergence

a"T"'(x)=0. (3)

Since the photon is massless, the theory contains no
intrinsic unit of length and is invariant under scale
transformation of the electromagnetic field strength.
This invariance is reflected in the vanishing of the trace
of the stress-energy tenso~

T (x) =0. (4)

4 Our metric has the signature ( -1,1, 1, 1). In Secs. 3 and 4 \\'e

use natural units with Planck's constant, the Boltzmann constant,
and the velocity of light unity, fI=k=c= 1.

.The direct connection of zero mass and the vanishing of the
trace of the stress tensor is J1ot a general result. I;"or example, the



'-::::-"1:-

:-.':."

",'-:;:.-

184 L. S. BROWN AND G. J. MACLAY

with the value obtained from the principal of virtual
work, where it is defined by the variation of the energy
per unit area induced by a change in the plate
separation :

,.;.

is unifonn between the plates. Then the now familiar
conditions of vanishing trace and proper dimensionality
give
(T~')(T) (.) = (n..n'+z..z') (kT /a')s(V

+(4z..z'-g..')(hc/a4)f(V, (17)
in which s and f are arbitrary functions of the dimen-
sionless variable

a a
-~a<J'OO)(OJ=-[t(/zcla3)'Y J= I(TA)(0> .(10)

aa aa

t=kTa/hc. (18)

In general, a given component of the stress is given
by the appropriate spatial derivative of the Helmholtz
free energy at constant temperature. Now, in analogy
to our previous discussion of the principle of virtual
work at zero temperature, the components of the stress
parallel to the plates,

(Tll )(T) (a) = (Tl2)(T) (a) = -(hc/a4)f(t) , (19)

must be identified with the negative of a Helnlholtz
free-energy density. With this identification of
(hc/a4)f(t) as the correction to Helmholtz free-energy
density for finite plate separation and temperature, we
can compute the pressure correction on one of the
plates by the partial derivative at constant temperature,

a
(T33)(T)(a)= -~(hc/a3)f(F.)J, (2Oa)

aa

The components of the stress along a plate, (Tl1)(O) and
(TJ2)(O), are also in accord with the principle of virtual
work. The system is not altered significantly if a per-
fectly conducting wall is erected between the plates at
a great distance from the origin. If such a wall, whose
normal points along either the x or the y axis, is
moved a distance 8d, the energy per unit area changes
byan amount 8d(TOA)(o), which is precisely the negative
of the product of the stress and the spatial displacement,
since according to the general form (6),

(TCO)(0)= -(Tll)(0)= -(TJ2)(O). (11)

We turn now to the situation at a finite temperature
T. In the limit of a very large separation between the
plates only blackbody radiation appears. The expecta-
tion value of the stress in the canonical ensemble must
become uniform and isotopic, and the stress-energy
tensor can depend upon only the time-axis normal,~I'.
The constraint of vanishing trace, together with the
dimensionality of this tensor, now gives the limiting
structure

(TI")(T) (~) = (g1"+4nl'n')(kT/hc)3kTo- , (12)

with 0- a pure number. The image-.construction in
imaginary time of the temperature-dependent Green's
function of Sec. 4 automatically gives this structure and
the explicit value~ ,;cc;. "j

~~!~~

as well as by the general fonn (17),

(T33)(T) (0) = (kT / aa)s(~)+3 (hc/ a4)f(~) , (2Ob)

and hence we must have
d

s(~) = --f(~) .(21)
d~

The image solution of Sec. 4 is in accord with these
results and provides the explicit functional fonn

1 ~ (2~)4
f(~) = --L -~~~)

4r2 1,..-1 [J2+ (2~)2m2]

It follows from the fonn (17) that the energy-
density correction is given by

(TOO)(T) (0) = (hc/a4)u(~) ,

2 ~

u=- L 1-4=7r2/4S.

r.-l
(13)

Thus, we reproduce the well-known res\lit6 that the
energy density and pressure of a photon gas of infinite
volume are given by

(T1O)(T)(~)= (T/15)(kT/hc)3kT (14)
and

(23)
with

0...:,
..,,'"'

:;.;i.;..;..J, .

.:~.:~
-,-", .~

°~:-:t

(Tkl)(T)(~)=Okli(JW)(T)(C). (15)
We may take account of the limits (6) and (12) and

write the stress-energy tensor at finite temperature and
plate separation as

(T'.")(T) = (T'.")(0)+(T'.")(T) (C)+(T'.")(T) (G) , (16)

so that we need consider only the correction (T'.")(T)(G),
which vanishes at zero temperature and at large plate
separation. We can obtain the structure of this correc-
tion if we make use of the qualitative result of the
Green's-function construction of Sec. 4 that the stress

u(t) = f(t)+ts(~) I (24)

which corresponds to the thennod)"Damic connection
between the internal energy U, the Helmholtz free
energy F, and the entropy S :

U=F+TS. (25)

Accordingly, we find that ks(~) is the correction to the
entropy per unit volume of the radiation field, and we
have related all the, components of the stress-energy
tensor to thennodynamic variables. Since the photon
is massless, photon number is not conserved, the.M. Planck, Vcrhan<ll. Deut. Physikalischen Ges. 2, 237 (1900).

.,.
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chemical potential of the radiation field vanishes, and
the thermodynamic energy balance is given by

dU-TdS+dW=O, (26)

Forin which !(3) has the numerical value 1.202

E-~,

in which dJV is the external work contribution. We have,
by construction, satisfied this energy-ba.lance equation
at constant temperature, and we need only require that
it hold at constant volume,

f(~) = -(~/8r),("(3)+ (r/i20)

-[ (~/4r)+rJe-4rf+O(e-8rf) .(31)

The limit ~ = kT a/ hc -0 corresponds ph)'Sically to
small temperature or small plate separation. In this
case we find that, neglecting exponentially small terms,
for Ta- 0,

au

aT

as
,

aT

=T (27a) (Tt°)(T) (0) = ['r(3)/r2J(kT / a)(kT /hC)2

-(r/15)kT(kT /hC)3 (32)

or, in terms of the Helmholtz free energ~., and

s;= -::.IJF:/IJT (lib)

This relation between the entropy and the free energy
is precisely the relation between the dimensionless
functions s(t) and f(v exhibited in Eq. (21). This
correspondence is a direct consequence of the zero mass
of the photon, which requires on the one hand that the
stress-energy tensor be traceless and, on the other, that
the chemical potential vanish. The thermod)"llamic
relationships which we have exhibited for the correction
term (TI")(T) (a) hold for the complete stress tensor,

since they are trivially satisfied by its other pieces.
The double-sum representation (22) of the free-

energy function f(v shows that this function is singular
at all rational points along the imaginary axis in the
complex t plane. This natural boundary corresponds to
the divergence of the partition function which occurs
when the temperature is analytically continued to a
pure imaginaf)' value. The double-sum representation
also exhibits the inversion symmetry

(TA)(T) (.) = -(r/45)(kT/hc)a(kT). (33)

The corresponding behavior of the complete energy
density and the pressure on a plane is, for Ta-. 0,

(1'»)(T) = -(r/720)(hc/a4)

+[r(3)/rJ(kT/a)(kT/hc)2 (34)

and

f(1/4~) = (2~)-4 f(~) .(28)

According!)", the knowledge of one as)'II1ptotic form
determines the behavior of the function for both large
and small ~. \V e can obtain the large-~ behavior if we
use a sum formula which is easily obtained by the
familiar contour integration method :

(T33)(T) = -(r/240)(hc/a4) .(35)

Note that the tenns which are independent of the plate
separation have all cancelled. The absence of such black-
body radiation tenns happens because at low tempera-
tures or, equivalently, at small plate separation no
modes of the radiation field propagating nonnally to
the plates can be excited. The modes propagating along
the plates contribute to the energ)' density, as seen in
Eq. (34), but do not contribute to the pressure on a
plate, Eq. (35), since the total free energy in these
modes is independent of the plate separation. The cor-
rections to these limits7 are exponentially small in the
parameter ...hc/kTa.

In the high-temperature or large-plate-separation
limit, we have, neglecting exponentially small tenns,
for Ta- 00 ,

(36)(~)(T)(CJ)= (r/720)(hc/a)4

7 Since the force becomes exceedingly small at large plate

separation, only this Ta- O limit is measurable. In addition to
the pressure discussed in the text, which is due exclusively to the
radiation bet\veen the plates, in any experiment there is also a
pressure from the blackbody radiation external to the plates \\.hich
cancels the blackbody contribution to the interior pressure. If we
neglect exponentially small terms, the expression for the total
experimentally observed pressure is the sum of Eqs. (35) and (IS).
At room temperature this pressure in dyn/cm2 is -p=O.OI300,1-.
+2Xlo-', where a is measured in microns. An experimental
measurement of the vacuum stress bet\\"een conductin~ plates has
been made by M. I. Sparnaay, Physica 24, 751 (195~). In adlfi-
tion, there have been a number of similar measurements with
dielectric plates [for experimental results and references, see
\\.. Block, J. G. V. de Jongh, J. Th.G. Overbeek, and ~I. J.
Sparnaay, Trans. faraday Soc. 56, 159i ( 1900) ], for \vhich the
theory must be mo<lified some\\.hat (Lifshitz el al., j{ef. 1). The
experimental results are consistent, in I:eneral, \\.ith the e.xistence
of attractive forces, \\"hich vary inversely \\"ith the plate separation
but are of insut1icient accuracy to clearly verify the exponent ami
coefficient of the leading term for the pressure.

8~4

14
(29)

Thus, for ~ -0,

~ ~

f(~)=-(~3/27r) L 1-3+(2~4/7r2) L l~
I-I 1-1

-[(~3,/7r)+~Je-(r/V

= -(~3/27r)r(3)+(~47r2/45)

-[(~3,/7r)+~2Je-(r/E)+O(e-(2r/E») t (30)
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tensor then detennines the energy density

(T33)(T)(G)= -[r(3)/4r](kT/a3)

+(r/240)(hc/a4). (37)
The corresponding limits of the total energy density
and pressure are given for Ta- ~ by

(T."4)(T)=(r/15)(kT/hcPkT (38)

a

(~)= (Izc/ar)-f(r/a)

Or
(45)

The total energy in the vacuum fluctuations is

u =47r 1~ rdr(~)(0) = -47r(lzc/ a)f(l) .
(46)

Accordingly, we find that the pressure on the sphere as
given by the principle of virtual work,

1 a
p=- -u = (hc/a4)f(1) ,

(47a)
47ra2 aa

and

(T33)(T) = (r/45)(kT/hc)3kT-[r(3)/4rJ(kT /a3) .(39)

Note that in this case all the tenns independent of the
temperature have cancelled-no contributions occur
with the character of the zero-point vacuum fluctua-
tions. The energy density is that of blackbody radia-
tion, while the pressure on a plate contains a purely
classical tenn (the physical significance of which is
unclear) in addition to the blackbody radiation con-
tribution. The corrections to these limits are exponen-
tially small in the parameter 4rkTa/hc.

The correction to the pressure on a plate may be
written as

agrees precisely with that obtained from the normal
component of the stress tensor evaluated on the surface
of the sphere

P=fk(Tkl)(o)fll r-= (hc/a4)f(1) .(47b)

The calculation of the function f(r/a) appears to be a
difficult one. An image construction cannot be employed
here because of the retarded propagation character of
a radiation pulse. It appears necessary to use a decom-
position into spherical wave modes, and it seems un-
likely that the partial-wave swn can be put into closed
form. An approximate evaluation has been made by
Boyer,8 who found a negative pressure with

f(l)~- (O.O9/87r) .

(T33)(T) (0) = (hc/a4)p('F.) ,
(40)

in which, ..
:~

On expanding the denominator in this formula and per-
forming the l-sum, we get

,::: :::

--i.:.:.';:.~

~;.~::.~1

~

p(~)=-1r~ L n21n(1-e-Ilr/E)-(r/45)~4, (43)
11-1

11

1

which is precisely the pressure correction obtained by
Mehra.3

It is interesting to compare our results on the stress-
energy tensor for conducting plates with the structure
of the zero-temperature stress-energy tensor in the
region outside a perfectly conducting spheres of radius
a centered at the origin. The s}-mmetry of this problem,
coupled ,vith dimensional considerations and the con-
dition that the stress tensor be divergence-free, re-
quires that the spatial stress have the form

~ .;':.'4
-,.

~ .

...

-; .-.:'-: :"~

,.",~
:;';' 0!

3. ZERO-TEMPERATURE GREEN'S FUNCTION

The free electromagnetic field-strength tensor FI'"(x)
is characterized by the field equations

o'FI'"+oI'F"'+o"Fal'=O, (48)

o"FI'"=O, (49)
and the nonvanishing equal-time commutator

i[POk(r ,t),F'm(r',t)J= (6kmO'- 6klom)6(r-r') .(50)

Since the equal-time commutator of the field strengths
involves a derivative of the 6 function, their time-
ordered product is not covariante under Lorentz trans-
formations. A covariant time-ordcred product 1"* can
be obtained by adjoining an appropriate contact or
"seagull" term to the ordinary time-ordered product T:

i1"*(FI'"(X)FA"(X') )= iT(FI'"(x) FA" (x') )
+ (g""1~"nA- gl'An"n"+g"Anl'n"- g""n"nA)6(x-x') .(51)

It follows from the field equations and commutation
relations that this covariant time-ordered product
satisfies

a
(Til)(0) = (Oil-fir)!r-("c/ar3)f(r/a)

ar

+~I:'("c/ar3)f('/a). (44)

The vanishing of the trace of the complete stress-energy

a.iT*(F'..(x)FAc(x')+ perms. = 0 (52)

.L. S. Brown, Phys. Rev. 150, 1338 (1966),..
',"

~:;.~:
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and

a,.iT*(F'..(x)FA.(x') ) = (g..aA- g.AO.)cS(.t-X') .(53)

The expectation value of the covariant time-ordered
product in the infinite vacuum

D+'..;A.(X-X')= (iT*(F'..(X)FA.(;t')»)(0) (~) (54)

is defined by the field equations (52) and (53) and by
the usual positive-frequency boundaf)' condition. The
first field equation (52) is satisfied if we \\Tite this free-
space Green's function in terms of a curl:

D+'..;A.(X-X')=d'..; A.D+(x-x') , (55)

d,..;A.= o'.o'Ag..- o.o'Ag'..+ o.O'.g'.A- o'.0'«g.A .(56)

Since

o'AD+(x-x') = -oAD+(x-.t') ,

the second field equation, (53), requires that

-o2D+(x-x')=5(x-x') ,

(57)

(58)

which has the familiar solution satisfying the positive-
frequency boundary conditions

where

all.;)..= alla').g..- a.a').gll.+a.a'.gll).-alla'.g.). , (64)

Since the image function is expressed as a curl, the
first of the field equations, (52), is obeyed; since

a').D+(x-x')= -g).rarD+(x-x') , (65)

it is a simple matter to show that the second field
equation, (53), holds as well, Finall~., it is straight-
for\vard to verify directl~. that the boundary conditions
(60) are satisfied, while the positive-frequency boundary
conditions in time obviously hold. The simplicit)' of
this solution results from the simplicity of the geometry,
In particular, an image technique analogous to that
of electrostatics is applicable to the radiation field
because the retardation times of the source radi,ltion
pulse and the image pulse are identical.

The generalization of this Green's function to the
situation where there are two infinite, perfectly con-
ducting plates, one at :;=0 the other at z=a, is im-
mediate, In this case \ve use an infinite sequence of inlage
sources of alternating t~.pes displaced along the z axis
to secure the solution1°

G+".;A.(X,X') = (iT*(FIl.(.'\')F)..(x'))(0)

~

=d'..;~. L D+(;r-x

1-
'-2alz)

(59)

=--
4r :I..2+jE

\Ve can now consider the case of a single, perfectly
conducting, infinite plate placed at z= 0. The tangential
components of the electric field and the normal com-
ponent of the magnetic field must vanish on the
conductor:

~
-dl'r;A& L D+(x-x'-2alz). (60)

1-

Each term in the Sunl corresponds to a particular rctll:c-
tion of the original source pulse by one of the pl:Llcs.
Since an infinite number of such reflections is possible,
our sums contain an infinite number of image tcmls.
The stress-energy tensor appears as

(Tl'r) = ( -i)GI'A;rA(;r,.~) -tgl'r( -i)GA&;A.(X,X)

-
=-0..0. L' (-i)D+(x-x'-2alz)I%-%., (6i)

1--

\vhere, according to the definition (2), it is implicit th:..t
the vacuum contribution to the Green's function is
omitted, so that the \"alue I= O is excludcd from thc
Stln1. L"sing the explicit functional form of the zcro-
mass propagator (59), \Ve easily derive thc rcsull:;
quoted in Sec. 2, Eqs. (6) and (i).

4. FINITE-TEMPERATURE GREEN'S FUNCTION

At finite temperatures, \ve must use the canollic:u
ensemble a\"era(Ye11o

{.\'")(T) = (Tre-8H)-1 Trc-8H.\ , (68)

10 The sums \\"hich occur here can lJe done by the usual col1luur
integration method to put the solution in a closefl iorm invnl\'ill.1;
h)-peroolic cosines, Therc is. howcvcr, no necessit). to do lhi!; i,.r
our purposes,

II Our treatment is a stal1uard one. Sce, for ex:lmple, L. P.
Kadanoff and G. Ba).m, QIII"'/III" .)./Il/is/ical .lftch"lIics (\V. A.
llenjamin, Inc., Xe\\. \.ork, 1962).

pol=Pm=FI2=O on the plate. (60)

The Green's function W +p.;A«(X,X') for this problem is
easily obtained by adding an image function to the
free-space solution. This image function is the free-
space Green's function for an image source placed at
the reflected coordinate

x'p= (...'O,X'I,X'2,-X'3) .(61)

To satisfy the boundary conditions (60), the image
current components parallel to the plate and the image
charge density sign must be inverted relative to the
corresponding source currents and char!-,e densities.
Hence, we define

-I

+1g"'= g"'- 2z"z'= (62)+
-1

Accordingly, we \vrite

IV +'..;~.(x,x') =d...;~.D+(.~-.T')-J,..;~.D+(x-.\.') ,

(63)
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in which .8 is the inverse temperature .8== T-l, and H is
the Hamiltonian of the system, which also governs its
time development by

X(t)=eiHIX(O)ciHI. (69)

The cyclic invariance of the trace

TrXY=TrYX (70)

and the Heisenberg equation of motion (69) imply that

time-dependent correlations of the foml

(A (I)B(I')(T)

depend only upon the time difference I-I' and, in
addition, satisfy the symmetry

(A (I)B(I')(T)= (B(I')A (1+i.8)(T) .{71)

Accordingly, if we write the various orderings of the
correlations as Fourier integrals,

(A (I)B(I'»(T) = r ~g(+)(",)ei...(I-I') , (72a)
J- 211"1~ dw

(B(I')A (1)(T) = -g(-)(",)ei...(I-I') , (72b)

-211"1~ dw
([A (1),B(I')](T) = -c(",)ei..(I-I'») (72c)

-211"

tion terms which arise when the step functions 8(t-t')
and 8(t'-t) that define the two time orderings are
commuted through the differential operator dl'r;Ao, and
we obtain

Dri'r; Ao(X- x') = (iT*(Fl'r(x )FAo(X') ) ) (T) (.)

=dl'r;AoDT(x-x') , (76)
in which

The various terms which occur here may be combined
in the form

DT(x)=D+(x)+DT'(x) , (78)

where D+(x) is the vacuum zero-mass propagator (59)

and f (dk) 1
DT'(x) =i --e"kore-#lil (l-e-#lil)-l

(271")3 21 k I
X(e-ilA:I'+e+-ilil'). (79)

The exponential damping factors in the integral (79)
ensure that the integral is well defined. We can therefore
e~"pand the temperature-dependent denominator to put
this correction function in the form of an infinite sum
of temperature images in imaginary time. The images
are displaced in time by im{J, where m is any positive
or negative integer excluding zero. The term with m = O
is simply the vacuwn propagator D+(x), so that the

complete propagator Eq. (78) becomes

we have the connection

g(:r.,(IJ) = =i=c(IJ)(I-e:r.6..)-1.
(73)

.
DT(X) = L D+(x"-i1n.Bn") .

..-
(80)

In particular, the time-ordered product is determined
by the value of the commutator.

The commutator of the free electromagnetic field
strengths is a numerical quantity. Hence, its value in
the canonical ensemble average is the same as its
ground-state e:\-pectation value. Furthermore, for t> t',
the commutator is simply twice the real part of the
Green's function, from which its value for t<t' can be
obtained by analytic continuation. Accordingly, for
the case of infinitely extended space, we have

Using this form, the temperature correction to the
stress-energy tensor in free space is easily computed,
obtaining the results quoted in Eqs. (12) and (13).
Our definition of the stress-energy tensor [Eq. (2)]
excludes the m=O vacuum propagator term.

The extension of this formulation to the fmite-tem-
perature radiation field bet\\"een two perfectly conduct-
ing infinite plates is direct: The presence of the plates
is accounted for by an infinite sum of spatial image
functions, and we have

GTI";A«(X,X')

= (iT*(FI"(x)FAI:(X'»)(T)

D".;~.(x-x')= (i[F".(x),F~.(x')J>(T)(~)

=d".;~.D(x-x') ,
(74)

with ! (dk) 1
D(x) =i --e'"kor[e-..lkll-e+..'kl'J. (75)

(27r )3 21 k I

\\'e can now readily obtain the finite..temperature
Green's function for this case of an infinitely extended

space by using the connection (73) between the two
operator orderings and the commutator. The non-
covariant "seagull" contributions to the covari:!nt
time-ordcred product (51) are canceled by the o-func-

~ ~

=d...;~. L L D+(x-;t'-2tJlz-imj3n)

1

~ ~
-d...;A. L L D+(.I:-."\"-2tJlz-im/3n).

1 (81)

,..~.
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It is a simple matter to verify that t1le second double
sum involving d,.";A. does not contribute to the stress-
energy tensor. The I= m= ° term of the first double sum
is excluded, of course, by defInition (2). The part of the
first sum, with m= 0, I~O, gives the zero-temperature
contribution to the stress-energy tensor which we have
already considered j the part with I= 0, m~O gives the
blackbody contribution which we have just discussed.

It is straightforward to show that the sum remaining
with neither 1 nor m vanishing gives the finite-tempera-
ture, finite-plate separation correction quoted in
Eqs. (17)-(22).
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