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The role of the casimir effect in the :static deflection and stiction

I. INTRODUCTION

By virtue of their very presence, material bodies alter in
and around the space they occupy the spectrum of the zero
point vacuum electromagnetic field. This can give rise to
Casimir forces between material bodies in proximity to each
other. Casimir forces can be attractive or repulsive depend-
i~g on the geometry of the material bodies.I-3 In the first
published paper on this subject, Casimir derived an expres-
sion for such a force as it exists between parallel, flat, semi-
infinite slabs of perfect conductors at zero temperature.4 Co-
variant calculations of the force for this same geometry were

first perfonned by Brown and Maclay using the stress-energy
tensor, and included corrections due to finite temperature.5
Elizalde and Romero published a review article on the sub-
ject in 1990.6 More recently, Casimir forces have been the
subject of a fair number of theoretical studies (see, for ex-
ample, Refs. 7-12). Experimental investigations have also
been carried out in the last few years which confinn some of
the theory. 13.14 Also recently, the notion that useful exchange

of energy with the vacuum in a controlled fashion might be
possible has received renewed attention, and Casimir forces
are considered important for experimental investigations in
this area.15.16

From a technological viewpoint, one area in which Ca-
simir forces already demand attention is that of microelec-
tromechanical systems (MEMS). Casimir forces can and do
playa significant role in micro- and nanometer-size struc-
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We present an analysis describing how the Casimir effect can deflect a thin microfabricated
rectangular membrane strip and possibly collapse it into a flat, parallel, fixed surface nearby. In the
presence of the attractive parallel-plate Casimir force between the fixed surface and the membrane
strip, the otherwise flat strip deflects into a curved shape, for which the derivation of an exact
expression of the Casimir force is nontrivial and has not been carried out to date. We propose and
adopt a local value approach for ascertaining'the strength of the Casimir force between a flat surface
and a slightly curved rectangular surface, such as the strip considered here. Justifications for this
approach are discussed with reference to publications by other authors. The strength of the Casimir
force, strongly dependent on the separation between the surfaces, increases with the deflection of the
membrane, and can bring about the collapse of the strip into the fixed surface (stiction). Widely used
in microelectromechanical systems both for its relative ease of fabrication and usefulness, the strip
is a structure often plagued by stiction during or after the microfabrication process--especially
surface micromachining. Our analysis makes no assumptions about the final or the intermediate
shapes of the deflecting strip. Thus, in contrast to the usual methods of treating this type ofproblem,
it disposes of the need for an ansatz or a series expansion of the solution to the differential equations.
All but the very last step in the derivation of the main result are analytical, revealing some of the
underlying physics. A dimensionless constant, K c , is extracted which relates the deflection at the
center of the strip to physical and geometrical parameters of the system. These parameters can be
controlled in microfabrication. They are the separation Wo between the fixed surface and the strip in
the absence of deflection, the thickness h, length L, and Young's modulus of elasticity (of the strip),
and a measure of the dielectric permittivities of the strip, the fixed surface, and the filler fluid
between them. It is shown that for some systems (Kc> 0.245), with the Casimir force being the only
operative external force on the strip, a collapsed strip is inevitable. Numerical estimates can be made
to determine if a given strip will collapse into a nearby surface due to the Casimir force alone, thus
revealing the absolute minimum requirements on the geometrical dimensions for a stable
(stiction-free) system. For those systems which do exhibit a stiction-free stable equilibrium state, the
deflection at the middle of the strip is always found to be smaller than O.48wo. This analysis is
expected to be most accurately descriptive for strips with large aspect ratio (L/h) and small
modulus of elasticity which also happen to be those most susceptible to stiction. Guidelines and
examples are given to help estimate which structures meet these criteria for some technologically
important materials, including metal and polymer thin films. @ 1998 American Institute of
Physics. [SOO21-8979(98)07517-3]
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FIG. I. Cross section of a MEMS membrane strip (e.g., fabricated by sur-

face micromachining): a rectangular membrane supported on two of its

edges, atx=O andx=L. The drawing is not to scale; in reality, the strip is

much longer than it is thick (L~h) and the aspect ratio is much smaller

(wo~L).

tures for two reasons. First, these forces (per unit area), typi-
cally varying with the third or fourth power of the separation
between the material bodies, are strongest when this separa-
tion is in the submicrometer regime. Second, many devices
are now fabricated small and therefore light enough, and
with moving parts in close enough proximity that Casimir
forces can complicate fabrication and significantly affect ac-
tuation and device performance.J7.18 With continuing reduc-
tion in the size and separation of structures, Casimir forces
will need to be accounted for increasingly in the design and
modeling of MEMS and nanoelectromechanical systems
(NEMS). In the near future, the most likely Casimir force to
playa consequential role in these systems is the parallel-
plate Casimir force, which attracts two adjacent flat parallel
plates towards each other, and which will be refeaed to sim-
ply as the Casimir force hereafter. We will show that at the
present the Casimir force (equivalent in this geometry to the
attractive retarded van der Waals force) is in part responsible
for stiction in a large number of MEMS, wherein the stiction
is often encountered during and after the removal of sacrifi-
cial layers in surface micromachining of transducers. This
problem is technologically important, because it adversely
affects the production yield on batch fabricated devices, and
also plagues many devices in operation. A :substantial
amount of research and development is underway towards
the understanding of and finding solutions for stiction (see,
for example, Refs. 19-23).

The Casimir force F c (per unit area) is proportional to
the inverse fourth power of the separation, d, between the

plates, viz.,

Fc=TJfJ{/d4, (la)

~=hc1T2/240, (lb)

(Fig. I). The rectangular membrane strip of uniform thick-
ness h is supported on two opposite edges (fixed edges) a
distance L apart, and is free along the other two edges. This
structure is an ubiquitous MEMS building block; in light of
its versatility and relative ease of fabrication (especially in
surface micromachining,) it is now made with a variety of
materials, ranging from single-crystal silicon, over polymers,
to metals.28-34 The main objective of this analysis is to relate
the static deflection at the center of the membrane strip to a
number of physical and geometric parameters which can be
controlled in microfabrication. In reaching this objective, the
analysis also reveals some important features of the system
under study.

Due to proximity to the rigid flat top surface S of the
bottom plate (Fig. I), the strip is subject to the attractive
Casimir force, and deflects into a curved shape. In the ab-
sence of deflection, the separation between the bottom sur-
face of the strip and the surface S would be wo. If the strip
has not collapsed into the surface S, the departure, due to the
deflection, from the parallel-plate configuration may be con-
sidered small all along the length of the strip in a large class
of real devices, where the typical aspect ratio L/wo is 100 or
greater. The thickness, h, of the strip is also considered much
smaller than L; this will be elaborated on in Sec. III.

17~ 1, (lc)

where 17 depends on the dielectric perrnittivities of the plates
and of the medium between them ( 17= 1 for perfectly con-
ducting plates with vacuum between them).4.24.2~; This pa-
rameter is generally larger than 0.5 if one of the Casimir
surfaces is metal coated. The value of 17 for a given system
can be found using Refs. 26 and 27. fi, and c have their usual

meanings.
A 2-J.Lm-thick, highly doped (doping density

~ 1020 cm-3) and thus highly conductive single-crystal sili-
con membrane is attracted towards a nearby parallel metal
plate under a Casimir force approximately equal to the
weight of the membrane when the separation is 0.4 J.Lm. At
0.25 J.Lffi separation, the force is roughly equivalent to that
which would be present if a 50 m V potential difference were
applied between the membrane and the metal plate. At 0.1
J.Lm separation, the equivalent potential difference would be
200 m V. The Casimir force per unit area is approximately I
atm strong at 10 nm separation between two metal plates.

In this article, we consider the Casimir force in a class of
microfabricated structures which are nearly, but less than
perfectly, parallel. Specifically, we are concerned with two
objects, the first of which is rigid and flat, and the second of
which is a rectangular membrane strip, flexible enough to
elastically deflect towards the first under the Casimir force

II. THE LOCAL V ALUE APPROACH

In almost all of the attempts made to date at measuring
the parallel-plate Casimir force, one or two slightly curved
surfaces have been used instead of two flat surfaces in order
to reduce the difficulty of maintaining the surfaces parallel.
Yet, in these attempts, the parallel-plate form [Eqs. (I)] have
been assumed for the force despite the departure, albeit
small, from the parallel configuration (see, for example, Ref.
35). The justification for this has been the following: that for
large enough radii of curvature and for small enough sepa-
rations between the adjacent surfaces, that is, small enough
separations so that the force is significant, the parallel-plate
geometry is adequately approximated and thus Eqs. (I) re-
main valid. In a recent exception, Lamoreaux used an alter-



J. ApRI. Phys., Vol. 84, No.5, 1 September 1998 Serry, Walliser, and Maclay

edges, i.e., in the midsection of the strip where the deflection
and thus the force are the largest. Under these assumptions
and inspired by the results of Deutsch, Candelas, Brevik, and
Lygren, we propose and adopt a local-valuc approach to thc
force strength. We propose that, during the deflection and in
the final curved configuration of the membrane strip, the
value of the Casimir pressure at a point along the length of
the strip is given by Eq. (la), where now d is the local value
of the separation between the strip and the surface, S.FIG. 2. Two flat conductive semi-infinite plates defining a wedge of angle a

and a cusp. For small values of r and a, the strength of the Casimir pressure
varies nearly with the inverse fourth power of the local value of the sepa-
ration, ra, between the plates, i.e., Fcx(ra) -4.

III. THE DIFFERENTIAL EQUATION OF THE PLATE
STRIP AND THE MEMBRANE APPROXIMATION

The membrane strip differential equation is a special
case of a plate strip differential equation, which describes the
deflection w(x) of a thin plate strip of uniform thickness h in
a static equilibrium condition under the load q(x), which is
perpendicular to the undeformed plane of the plate (i.e., a
lateral load). The plate strip differential equation is fourth
order in x:39

d2w(x}

dx2

d4w(x)

D dX4+N -q(x

where D, the flexural rigidity of the plate strip, is defined as

EhJ

D= 12( 1- v2) ,

native to Eq. (la), by accounting for the known radius of
curvature of a rigid hemispherical lens, which he used as one
of the Casimir plates in his experiment; the other plate, also
rigid, was flat.13 Theoretical approaches involving perturba-
tion methods have been applied to explore the force in ge-
ometries with known, and fixed departures from the parallel
configuration. For example, Zayaev and Mostepanenko have
used a perturbation approach to calculate corrections to Eq.
(la) for the case where one surface is rigid and flat, and the
second surface is also rigid, but curved, yet nonspherical.36
In contrast, the analysis of the static deflection of the mem-
brane strip which we embark on presently lacks the benefits
of the rigidity of the strip, and of the knowledge of its form.
That is to say, the final shape of the flexib[e strip in the state
of stable mechanical equilibrium is not known to us, and
neither are the intermediate shapes through which one tacitly
assumes the strip to have evolved in reaching the energeti-
cally favorable state of static deflection. We need an alterna-
tive approach to describe the static deflection of the mem-
brane strip under the Casimir force. In the absence of an
exact expression for the Casimir force on a curved surface
with an unknown shape, a shape which evolves due indeed to
the action of the force itself, we propose an alternative ap-
proach as described next along with the reasoning which
leads up to it.

Deutsch and Candelas in 1979 derived an exact expres-
sion for the (attractive) Casimir force between two perfectly
conducting, semi-infinite plates with flat surfaces at an angle
to each other so as to define a wedge, such as in Fig. 2.37
Brevik and Lygren arrived at the same results in 1996 using
a different approach.38 These results show the following: that
for a wedge of angle a, at a small distance, r, from the cusp
of the wedge, the strength of the Casimir force per unit area
on either surface of the wedge is a function of the product,
ra, which for small values of a approaches the local value
of the separation between the surfaces (Fig. 2). Furthermore,
these results show that the force per unit area varies very
nearly as the inverse fourth power of the separation-same
as in the parallel-plate geometry--and accepts extremely
small corrections to this form, ( r a) -4, for small values of a,
with the correction reaching only 1% at a=0.1 rad (5.7°). In
our system, the curvature of the deflected membrane strip is
assumed negligible enough so that at all points along the
length of the strip, the tangent to the strip makes an angle
less than 0.1 rad with S. This assumption is especially well
justified where it matters the most: away from the supported

with E and v denoting the Young modulus of elasticity and
the Poisson ratio, respectively, of the material of the strip. N,
to be discussed shortly, is a force per unit width of the strip.
We consider the plate strip subject to the fixed-fixed bound-
ary conditions. That is to say, the supported edges are not
free to approach each other as the strip deflects, and further-
more, the slope of the strip, dw/dx, is zero at these edges.
This boundary condition is appropriate for the great majority
of microfabricated plate strips.

Bending and stretching are assumed to be the two
mechanisms by which the lateral load is carried in the strip.
The bending is represented by the fourth order term in Eq.
(2a). The stretching is represented by the second order term,
in which the so-called middle surface membrane forces, N,
are in-plane forces, assumed to exist in a plane halfway
through the thickness of the plate. This plane is considered a
neutral plane, which means that the in-plane stresses devel-
oped as a result of the bending may be neglected on this
plane. Instead, the main contribution to N comes from the
membrane-type stretching of the strip in response to the lat-
eralload.39

If the stretching is negligible, then we have the case of
pure bending of the plate strip, and the second order term
may be dropped from the differential equation [Eq. (2a)]. If
the bending behavior is insignificant and can be neglected,
then the external load may be assumed to be carried almost
entirely by the membrane forces N. An example of this
would be the behavior of a strip with a large enough aspect
ratio L/ h as will be discussed later in Sec. 111.40-42 The strip
may then be well approximated as a flexible membrane strip,
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N=Eh[u'(x) + tW'2(X)],

u(O)=u(L)=O,

w(O)=w(L)=O,

where u(x) and w(x) are the x and z components, respec-
tively, of the displacement vector for a membrane element of
length, dl, as shown in cross section in Fig. 3.44 A prime
denotes differentiation with respect to x. Equation (4a) is the
same as Eq. (3), but with the load q(x) replaced by the
Casimir pressure (load) at a distance x from the left edge of
the membrane strip. In cases where initial in-plane stresses
exist, N receives an additive contribution from these stresses,
which we leave out in this study. In static equilibrium, for a
given deflection at the center of the strip, the magnitude of N
is constant along the length of the membrane [Eq. (4b)]. The
strain, �xx, in the x direction is related to the displacements

by44

FIG. 3. Membrane strip deflection (cross section): an element of length d/ ,
originally a distance x away from the left edge, is displaced by an amount
u(x) in the x direction and by an amount w(x) in the z direction. This is not

to scale; the curvature is exaggerated.

which carries the external load mainly by stretching out in
the plane of the strip. The differential equation then reduces
to the second order in x:39.43

d2w (x ) (3)

Exx= Ut (X)+( 1/2)wt2(x),

and is seen from Eqs. (4b) and (4c) to be independent of x.
Using Eq. (4c) and the definition of the flexural rigidity

[Eq. (2b)], the parameter 11 can be written in terms of the
aspect ratio, L/h, and the expression [Eq. (6)] for the strain
E xx :

(6)

N -1= -q(x
dx'

'Y=(~)2(~\
, I \ l2(I-v~) ,. (7)

To the best of our knowledge, a clear-cut criterion (a
critical value for y) has not been cited in the published lit-
erature to distinguish the pure bending behavior from the
pure membrane-type behavior. Indeed, it is expected that the
transition from one to the other is a gradual one. We adopt
the criterion set forth implicitly by Mansfield for distinguish-
ing those strips to which the membrane approximation does
apply, namely, for the flexural rigidity, and thus the bending
to be neglected safely, yshould be about 400 or larger.43 The
role of the aspect ratio (L/h) is clear. The role of the elas-
ticity of the material is less obvious, however, especially
since Young's modulus does not appear in Eq. (7). The con-
tribution of the Poisson ratio does not vary much with dif-
ferent materials, because this parameter is almost always less
than about 0.5 for materials of interest in MEMS and it ap-
pears to the second power in Eq. (7). The significance of the
elasticity of the material is reflected largely in the presence
of the strain, Exx[=U'(x)+tw'2(x)], in the numerator of
the right-hand side in Eq. (7). The maximum elastic strain
that a material can support determines the upper limit on
Exx, and thus the lower limit on the aspect ratio L/ h if the
restriction on y is to be met. For steel and aluminum alloys,
for example, the maximum elastic strain is about 0.004. This
puts a lower limit of about 1000 on the aspect ratio. For
some polymers capable of supporting much larger elastic
strains, the aspect ratio can be considerably smaller in order
for the membrane theory to apply. However, we consider the
assumption of small slopes (dw/dx) essential to the line of
reasoning which lead up to the proposed local-value ap-
proach to the Casimir force strength on a curved surface.
Therefore, for deflections large enough to put in question the

A clear-cut criterion for detennining whether a strip is to be
treated as a membrane strip or a plate strip does not exist,
and experimental data are needed to address this issue in
microfabricated structures. However, the ratio,

L2N

4D(=Y)'

is a useful quantity to investigate in assessing which of the
two mechanisms, bending or stretching, if either, is the
dominant one in carrying the externalload.39.43 Larger values
of 'Y imply stronger membrane behavior. We will return to
this quantity, 'Y in order to probe the role of the aspect ratio,
£/ h , and of the elasticity in determining the relative impor-
tance of bending and stretching.

The deflection of the membrane strip decreases the sepa-
ration; this in turn increases the magnitude of the Casimir
force. This therefore is a system with positive feedback and
is potentially subject to instability. However, if the strip is
resistant enough, after some deflection and before membrane
contact with the surface S, the effect of the Casimir force on
the membrane is countered by the development of restoring
membrane forces N, which arise due to the deflection. For a
given set of parameters, which includes membrane thickness
and length, we expect the stable static equilibrium state, if
existent, to correspond to a single particular yalue of the
deflection of the points midway along the length of the mem-
brane strip at x = £/2. Unless otherwise specified, membrane

deflection shall be understood hereafter as the deflection at

x=£/2.
Adopting the local-value approach (Sec. II) to the force

strength, the differential equations and boundary I:onditions
describing the static equilibrium of the membrane strip are
for O~x~£ (Figs. 1 and 3):

-Nw"(x)= 17~[Wo-W(X)]-4, (4a)

(4b)N'=O,
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validity of the local-value approach, the analysis presented
here will not apply, even if the membrane criterion (restric-
tion on y) is met. Experimental data are needed to address
these issues. Our methodology will likely prove best suited
for application to those strips wherein either the aspect ratio
L/h, or the maximum elastic strain possible, or both, are
quite large. Such strips also happen to be those most suscep-
tible to the problem of stiction.

IV. THE ANAL YSIS

Multiplying Eq. (4a) by w'dx and integrating indefi-
nitely once, we arrive at the expression

(N/2)w'2(x) -( 1]1Jt/3)[ wo- w(x ) ]-3 = 4>, (8)

where 4> is a constant. At x = L/2 (the center of the strip) the

slope of the strip is zero; 4> is thus found to be the Casimir
energy at x = L/2:

FIG.4. For each value of Kc<O.245, a stable and an unstable equilibrium
state exist; the stable equilibrium position of the center of the strip is always
less than O.48wo .For Kc>O.245, membrane strip collapses into the surface
S.

t/>= -( 1J'Jtj3)[ wo( 1- 8£/2)]-3 (9)

where we have defined the nonnalized deflection and its
value at x = L/2,

8U2)-3]1/2

w(x)/wo= o(x), ( lOa)

b'(L/2) = b'L/2
(lOb)

Equation (8) can now be recast in dimensionless form,

viz.,

(Nwg/21]9t)8'2(x) -t[ 1- 8(X)]-3 -t( 1- 8£/2)-3.
(11) 3

Now we solve Eq. (4c) for u'(x), multiply through by
dx, and then integrate over the entire length of the strip.
Using the boundary conditions on u(x) [Eq. (Sa)], we arrive
at

NL

Eh

2 i LWo b"2(x)dx

2 o
(12)

=-

( 15)
The expression on the right-hand side is not integrable in
closed fonD. We perfonD a numerical integration (MATH-
EMATICA, Wolfram Research, Inc.) for each and every value
of 8L12 between zero and unity, which corresponds to the
case of the membrane strip in contact with the surface S. The
result is shown in Fig. 4, which is a plot of Kc versus the
nonDalized deflection, 8L12 (plotted along the bottom axis).
This plot relates, in static equilibrium, the geometrical and
physical parameters of the system to the nonDalized deflec-
tion at the center of the membrane strip.

Figure 4 shows that, for a given value of Kc<O.245,
there are two corresponding values for 8L12. The interpreta-
tion of this can be found in an earlier study of an anhanDonic
Casimir oscillator (ACO), a system similar to the one studied
presently but simpler.45 In summary, the results of the ACO
study guide us to conclude that, in the present system, the
smaller value of 8L12' which we call lIl:)f, defines a stable
static equilibrium state. This state is the state of minimum
potential energy for the membrane strip, subject to the Ca-
simir force and in the absence of any other external forces.
Here, the Casimir force deflects the strip, which is restrained
from collapsing into the surface S by the elastic restoring
forces, represented by N, which develop as a result of the

This quantity has the units of length. We note that the ratio
NL/Eh on the left-hand side is the strain in the x direction
[Eqs. (4c) and (6)] multiplied by the full length of the mem-
brane prior to deflection. Therefore, the expression on the
right-hand side is the difference between the length of the
membrane before and after the deflection.

Using Eq. (8) and the symmetry of the geometry about
x=L/2, Eq. (12) may be transformed (d!5= !5dx) into an
integral over the dimensionless quantity !5 for O~ !5~ !5u2 :

N3/2L ~

'J2":;;;JiEh

= f 06L/2~( 1- 6)-3- ( 1- 6L/2)-3d 6. (13)

We next solve for t5(x) from Eq. (11), perform a sepa-
ration of the variables, and integrate over half the length of
the membrane (i.e., O~x~L/2, O~ t5~ t5L/2):
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deflection. The larger value, dl:/~x, corresponds to an unstable
static equilibrium state. For a given system, if the membrane
strip is by the action of an external force (other than the
Casimir force) pushed passed 8'J}; nearer the fixed surface S,
it will collapse into S for large enough additional deflection.
There exists the theoretical possibility that this extemal force
will deflect the strip in such a way that the strip assumes a
form which satisfies the differential Eqs. (4), and the bound-
ary conditions (5), and with OU2= dl:/~x. The strip can then
theoretically stay in this unstable equilibrium indefinitely if
the external force were removed and no perturbations were
present. For details, please see Ref. 45.

Figure 4 also reveals two salient features of the system
under study. First, with nothing other than the Casimir force
loading the strip, the strip will collapse if Kc is larger than
the critical value 0.245. This provides a way to check if a
system of given dimensions and material properties will have
a stable equilibrium position in the absence of other forces,
such as an electrostatic actuation force, or a capillary force
during and after the wet etching of a sacrificial layer. For
example, in a system where the strip is 500-JLm-long, I-JLm-
thick, and made of a polymer with E= 109 Pa, and where a
thin film of gold is deposited on both the surface S and the
polymer strip to act as electrodes (i.e., 11==' I), the strip will
collapse due to the Casimir effect alone if Wo is roughly 0.8
JLIn or smaller. The second important feature of this system
as revealed in Fig. 4 is that, regardless of the dimensions and
physical properties of the system, the stable equilibrium
state, if existent (i.e., if Kc<0.245), always corresponds to a
deflection of less than about 0.48wo at the midpoint of the
strip at x=L/2.

As stated earlier, the degree of accuracy of the analysis
presented here improves with increasing aspect ratio (L/h)
and with elasticity of the strip material. Polymers in general,
and especially highly elastic polymers with low glass transi-
tion and high melting temperatures, are becoming more at-
tractive as materials for fabricating MEMS
transducers.30.31.46 This is in part because the fabrication and
curing temperatures of many polymers are low .~nough to
facilitate integration of polymer-based transducers with fab-
ricated complementary metal-oxide-semiconductor
(CMOS) chips. Other reasons include the flexibility in
changing functional groups on the polymers for sensing ap-
plications and a wide range of elastic properties to choose
from. The membrane model presented here should prove
useful in some microfabricated devices which employ poly-
mers and other highly elastic films as transducers.
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