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Abstract
In quantum field theory, coherent states can be created that have negative energy
density,meaning it is below that of empty space, the free quantumvacuum. If no restric-
tions existed regarding the concentration and permanence of negative energy regions,
it might, for example, be possible to produce exotic phenomena such as Lorentzian
traversable wormholes, warp drives, time machines, violations of the second law of
thermodynamics, and naked singularities. Quantum Inequalities (QIs) have been pro-
posed that restrict the size and duration of the regions of negative quantum vacuum
energy that can be accessed by observers. However, QIs generally are derived for situa-
tions in cosmology and are very difficult to test. Direct measurement of vacuum energy
is difficult and to date no QI has been tested experimentally. We test a proposed QI for
squeezed light by a meta-analysis of published data obtained from experiments with
optical parametric amplifiers and balanced homodyne detection. Over the last three
decades, researchers in quantum optics have been trying to maximize the squeezing
of the quantum vacuum and have succeeded in reducing the variance in the quantum
vacuum fluctuations to− 15 dB. To apply the QI, a time sampling function is required.
In our meta-analysis different time sampling functions for the QI were examined, but
in all physically reasonable cases the QI is violated by much or all of the measured
data. This brings into question the basis for QI. Possible explanations are given for
this surprising result.
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1 Introduction

In quantum field theory, the vacuum expectation value of the normally ordered or
renormalized energy density 〈Too〉 need not be positive. For example, a superposition
of a vacuum state (n = 0) and a two photon state (n = 2), can have negative renormalized
energy density with the proper choice of coefficients. Squeezed light can have a
negative energy density. From theory and experiment, we know that static negative
energy densities associated with vacuum states are concentrated in narrow spatial
regions, e. g., inside a parallel plate Casimir cavity with small plate separation or in
the region near the Schwarzschild radius in the Boulware vacuum where the energy
density is everywhere negative as seen by static observers. There is no known way
to directly measure vacuum energy density. On the other hand, the total energy of a
system is believed to always be positive or zero. For example, the sum of the mass
energy of the plates plus the negative vacuum energy inside the cavity is positive [1,2].
The classical energy conditions imply that an inertial observer who initially encounters
some negative energy density must encounter compensating positive energy density
at some arbitrary time in the future. Quantum Inequalities (QIs) have been derived
for the free vacuum quantum electromagnetic field, with no sources or boundaries,
which constrain the magnitude and duration of negative energy densities relative to
the energy density of an underlying reference vacuum state. The QI places bounds
on quantum violations of the classical energy conditions [3,4]. The QI is formulated
as a mathematical bound on the average of the quantum expectation value of a free
field’s energy-momentum tensor in the vacuum state, where the average is taken along
an observer’s timelike or null worldline using time sampling functions. Contrary
to the classical energy conditions, the QI dictates that the more negative the energy
density is in some time interval T, the shorter the duration T of the interval, so that an
inertial observer cannot encounter arbitrarily large negative energy densities that last
for arbitrarily long time intervals. An inertial observer must encounter compensating
positive energy density no later than after a time T, which is inversely proportional to
the magnitude of the initial negative energy density.

In QI, restrictions are placed on the integral of the vacuum expectation value of
the renormalized energy density 〈Too〉 multiplied by a sampling function. For the
electromagnetic field in flat space-time, with a normalized time sampling function of
f (t) = (to/π)(1/(t2 + t2o )), Ford has shown [5]

ρ̂ ≡ to
π

∫ +∞

−∞
〈Too〉
t2 + t2o

dt � − 3

16π2

�c

(cto)4
(1)

To give a frame of reference, this can be compared to the vacuum energy density
within an ideal parallel plate Casimir cavity of separation a:

〈Too〉Cas = − π2

720

�c

a4
(2)

The ratio of the numerical factors for the free field to the Casimir cavity is 1.4, so a
negative energy density ρ̂ equal to that in a perfectly conducting parallel plate cavity
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of spacing a can exist no longer than for a time to ∼ a/c, about 3 × 10−16 s for
a typical experiment. As the sampling time to increases, ρ̂ rapidly goes to zero.
(Note however, that as derived, the QIs do not apply directly to the Casimir cavity
since it has boundaries. Also, to test Eq. 1 experimentally, one must make an absolute
measurement of the vacuum energy density, an experimental challenge for which no
solution has yet been found. Some progress is due to Riek et al. who were able to
directly probe the spectrum of squeezed vacuum fluctuations of the electric field in
the multi-THz range using femtosecond laser pulses [6].)

If the laws of quantum field theory placed no restrictions on negative energy, then
it might be possible to produce surprising macroscopic effects such as violations of
the second law of thermodynamics, traversable wormholes, warp drives, and possibly
time machines [5]. QI appear to restrict these violations of the second law [7,8].

A quantum inequality has been derived for squeezed light byMarecki [9]. Squeezed
light has a nonclassical distribution of the quadrature components (typically phase
and amplitude), which may be considered as the canonical momentum and position
components of an equivalent harmonic oscillator corresponding to the frequency of
the electromagnetic radiation being considered. Squeezed states are routinely made in
quantum optics experiments in the process of parametric down conversion, in which
an incident photon is converted in a non-linear crystal to two entangled photons of the
same frequency, which is one half of that of the incident photon. The fluctuations of
the electric field in the squeezed light are locally lower than the vacuum fluctuations,
the so-called shot-noise level. There appears to be a limit to the amount of squeezing
relative to the free vacuum, which has been measured to be from − 0.5 dB to the most
recent value of − 15 dB [10]. Detection of the squeezing relative to the free vacuum
field is done using balanced homodyne detection (BHD). Marecki’s QI predicts the
maximum degree of squeezing in dB that is possible in terms of the fraction of the
cycle during which the variance in the electric field is less than that of the free vacuum
limit. Marecki developed the theoretical framework demonstrating the ability of BHD
to quantify the vacuum fluctuations of the electric field in terms of vacuum expectation
values of products of the electric field operators, the one- and two- point functions of
arbitrary states of the electric field [11,12].He applied this theory to themeasurement of
negative Casimir energy densities using BHD. The corresponding experiments require
the placement of photodiodes within Casimir cavities and have yet to be performed.

To date no QI has been tested experimentally. One of the reasons for this was noted
by Marecki [9]: “As far as we know quantum field theoreticians do not know that
their inequalities may influence real experiments nor are quantum opticians aware
of the existence of such inequalities.” Most of the quantum inequalities have been
developed by quantum cosmologists or quantum field theorists, who are unaware
of measurements of vacuum energy done by experts in quantum optics. This paper
is the first attempt to bridge this gap and test a quantum inequality with published
experimental data. It appears easiest to test the QI for squeezed light because with
balanced homodyne detection one measures the squeezing relative to the free vacuum,
which corresponds to the theoretical quantity described in the corresponding quantum
inequality. However, there may be some subtleties in the comparison because of
differences in the measurement protocols. Indeed, we find that the QI as given is
violated by most of the experimental data, yet all experimental data are consistent
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with a theoretical model of the optical parametric amplifier (OPA) used to generate
squeezed light.

2 Quantum Inequality for Squeezed Light

The QI for squeezed light gives a minimum value for the time sampled magnitude of
the variance 〈Δ〉A of the quantized electromagnetic field for a state A where

〈Δ〉A ≡
∫ +∞

−∞
f (t)dt(〈E2(x, t)〉A − 〈E2(x, t)〉vac) (3)

where f (t) is normalized to 1.
A simplified version of Marecki’s derivation is given in Appendix A. His key result

is [9]

〈Δ〉A ≥ −2

(2π)2

∫ ∞

0
dω

∫
d3 pμ2

pωp|( f 1/2)FT (ω + ωp)|2 (4)

where ω2
p = p21 + p22 + p23.

Theminimumvalue of the variance 〈Δ〉A for a stateA is determined by the timewin-
dow function f (t), specifically by |( f 1/2)FT |2 the magnitude squared of the Fourier
transform of the square root of the window function f (t). In order to insure conver-
gence of the integral, a spectral function μp = μ(ωp − ω0), a function of ωp that
is strongly peaked at ωp = ω0, must be included. This term reflects the frequency
response of the apparatus measuring the variance. The result Eq. 4 is similar in spirit
to that of other researchers in that it involves the Fourier transform of the time window
[13]. There is no proof that Eq. 4 represents the greatest lower bound for 〈Δ〉A.

In formulations of other Quantum Inequalities, other features of the time window,
such as the second derivative, determine the minimum average energy over the time
sampling [5]. In all formulations ofQuantum Inequalities to date, thewindow function
determines the minimum energy values. This may seem counter intuitive. In all cases,
these formulations assume a free plane-wave electromagnetic field without sources
or boundaries. We have found, like others, that the specific properties of the window
function are very important [4]. Only in Marecki’s calculations of the QI does a
spectral function μp appear. This may be a problem because the Fourier transform
of the time window f (t) implies a certain frequency response of the apparatus, and
this may conflict with the independent requirements for the function μp. The quantity
that is generally measured in experiments is the Log10 of the variance for some state
A relative to the variance of the free vacuum:

Rexpt = 10Log10

( 〈Δ〉A + 〈E2〉vac
〈E2〉vac

)
(5)
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According to Marecki, the measured squeezing in dB must exceed in numeric value
R, where

R = 10Log10

[ 1
(2π)3

∫
d3 pμ2

pωp(1 − ∫ ∞
0 dω(4π |( f 1/2)FT (ω + ωp)|2)

1
(2π)3

∫
(μ2

pωp)d3 p

]
(6)

2.1 Evaluation of R for Specific Time Sampling Functions

For a Gaussian

f (t) = 1

t0
√
2π

e−t2/2t20 (7)

we obtain

R = 10Log10

[
−

∫
d3 pμ2

pωpEr f [
√
2toωp]∫

d3 pμ2
pωp

]
(8)

If μp is a function of ωp sharply peaked at ω0, with width δω 	 ω0, then to a good
approximation

R(ωoto) = 10Log10[Er f (
√
2ωoto)] (9)

(Marecki has an additional factor of 2 in the Erf function, which we do not get). As
a check on the role of the frequency windows μp, we can do all the integrations in R
for a Gaussian frequency function, and we get an additional factor of ω3

0δω for the ωp

integration in the numerator and in the denominator. These factors cancel, giving to
lowest order in δω, the result quoted above. On the other hand, if we do not introduce
a frequency function, we find that R = 10Log10[1] = 0, indicating that no squeezing
is possible. In other words, a frequency function is required to get reasonable results;
however, as we have noted the frequency function may not be consistent with the time
window.

We can also compute R for a squared Lorentzian time sampling function (an ordi-
nary Lorentzian does not give well-behaved integrals):

f (t) = 2

π

t30
(t2 + t2o )2

(10)

We find

R(ωoto) = 10Log10(1 − e−2ωoto) (11)

assuming μp is strongly peaked at ωo. The equation behaves similarly to the one for
the Gaussian time function.
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We can compute R for a square window function f (t) of width ΔT with perfectly
sharp corners and using a frequency function μp. We find that we always get perfect
squeezing, R = 10Log100, with no dependence on ΔT . Although a perfectly sharp
window is not physically possible, and is mathematically unstable, one still wonders
about the meaning of this result. A sharp window allows one to do a perfect measure-
ment (at least in principle) in which only regions of perfect squeezing are measured,
and one can avoid the regions with partial or antisqueezing.

We have also evaluated the variance for a symmetric trapezoidal window with a
center region TS long and sloping sides that are each nTs long, normalized to 1.

3 Production of Squeezed Light Using Optical Parametric
Amplification

Amodel for an optical parametric amplifier (OPA) with balanced homodyne detection
(BHD) predicts the relative variance S in the quadrature components of the vacuum
electromagnetic field for a state A:

S = 〈E2〉A
〈E2〉vac (12)

The model [14–16] predicts that

S(θ, x, ω) = 1 + 4βx

[
cos2θ

(1 − x)2 + (ω/γ )2
− sin2θ

(1 + x)2 + (ω/γ )2

]
(13)

where x = P/Pth is the ratio of the laser power to the power at threshold (0 < x < 1),
β is the optical efficiency, θ is the phase difference between the local oscillator field
(LO) and the vacuum field, ω is the sideband angular frequency of measurement by a
spectrum analyzer, γ is the halfwidth or cavity decay rate [γ = c(T + L)/l where c =
speed of light, T =transmissivity of coupling mirror, L =round trip loss, l =round
trip length]. The model has been parameterized so the squeezing is a maximum at
ω = 0. Generally, the squeezing is given in terms of dB:

R = 10Log10S(θ, x, ω) (14)

To clarify the physical basis of the model and derive equations relating it to the QI, we
briefly review the OPAmodel and experimental results. In recent experiments, values
for the full width 2γ /2π range from 9 MHz to 84 MHz. Measurement frequencies ω

are typically about 1 MHz to, at most, 8 MHz, 0.9 < β < 0.99, and laser wavelengths
vary from about 795 nm to 1064 nm. In the measurement range, (ω/γ ) varies from
about 0 to, at most, 1. Figure 1 shows a recent experimental arrangement [10]. A
CW laser with frequency ωLO encounters a polarizing beam splitter PBS, one beam
going to a second harmonic generator SHG, the other beam which serves as the local
oscillator LO goes to a 50–50 beam splitter in the balanced homodyne detector BHD.
The beam leaving the SHG, with frequency 2ωLO , goes to the optical parametric
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Fig. 1 Schematic of experimental setup. Squeezed vacuum states of light SQZ at a wavelength of 1064
nm were generated in a double resonant, type I optical parametric amplifier (OPA) operated below thresh-
old. SHG second-harmonic generator, PBS polarizing beam splitter, DBS dichoric beam splitter, LO local
oscillator,PD photodiode,MC1064 threemirror ring cavity for spatiotemporalmode cleaning,EOM electro-
optical modulator, FI Faraday isolator. The phase shifter for the relative phase θ between SQZ and LO was
a piezoelectric actuated mirror [10]

amplifier OPA. The OPA is operated below threshold and is composed of a cavity with
a nonlinear crystal that is fully reflective at one end and a partially reflective mirror
at the other end. The OPA non-linear crystal is driven by the output of a frequency-
doubled laser SHG. The crystal has a small probability of producing two photons of
the same frequency ωLO (half the driving frequency) by degenerate parametric down
conversion. Detection is by balanced homodyne detection in which the difference in
photodetector current PD1–PD2 is measured for components of the squeezed vacuum
SQZ and the laser LO that have interfered at a 50–50 beam splitter. The difference
current is analyzed by a spectrum analyzer, typically with a measurement bandwidth
of about 100 kHz to 500 kHz.

Data on a squeezed vacuum taken from the apparatus illustrated are shown in Fig. 2
[10]. Fits based on the maximum and minimum values of S from Eq. 13 are shown in
dashed lines for three power settings. In Fig. 3, the vacuum squeezing is presented as a
function of the phase difference between the LO and the squeezed vacuum SQZ [10].
In this particular experiment the mirror was vibrated periodically and the abscissa
given in time rather than angle, but these methods are equivalent. The first minimum
would correspond to the antisqueezed quadrature θ = π/2 radians, the second to π/2
+π radians [17]. The fraction of the period for which the squeezing is negative equals
FT , which is an indicator of the squeezing. From measuring the graph (using curves
d and a), one finds that FT is about 0.14.

If S(θ, x, ω) < 1, then the variance or noise of this quadrature component is less
than that of the free vacuum and is squeezed. This implies that the other quadrature
component R(θ + π/2, x, ω) > 1 is antisqueezed. The minimum value of S for
squeezing occurs for θ = π/2 and equals

123

Author's personal copy



804 Foundations of Physics (2019) 49:797–815

Fig. 2 Squeezing in dB = 10Log10R as a function of Power = Pth x , Pth = 16.2mW , and measurement
frequency ω. Theoretical curves are shown as the narrow dashed lines with 2γ /2π = 84 MHz and β =
0.975. The decrease in noise with increase in frequency is due to the term (ω/γ )2 in Eq. 13 [10]

Fig. 3 Squeezing dB as a function of phase difference θ measured here by the time to move a mirror. Curve
a: noise level with all inputs blanked; Curve b: phase is locked to the squeezed quadrature (θ = π/2); Curve
c: phase is locked to the antisqueezed quadrature (θ = 0); Curve d: the phase is scanned. The fraction of
the period that the squeezing is below zero equals FT [10]

S−(x, ω) = 1 − 4βx

(1 + x)2 + (ω/γ )2
(15)

and the maximum antisqueezing occurs for θ = 0 or π and equals

S+(x, ω) = 1 + 4βx

(1 − x)2 + (ω/γ )2
(16)
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Fig. 4 The maximum squeezing R− = S−(x, ω) as a function of x. When S−(x, ω) < 1 there is squeezing
below the normal quantum limit. We assume β = 1 and ω/γ is negligible

The maximum possible squeezing S−(x, 0) is shown as a function of x in Fig. 4.
The frequency spectrum of squeezing is Lorentzian. The product of the maximum and
minimum variances is

S−(x, ω) ∗ S+(x, ω) = 1 − 16β(1 − β)x2[
(1 + x)2 + (ω/γ )2

] [
(1 − x)2 + (ω/γ )2

] (17)

For an ideal optical system with no losses β = 1 and the product is 1, as it must be
according to the Heisenberg Uncertainty Principle.

For comparison to the quantum inequality, we need to know the angular interval
Δθ over which the light is squeezed. The light is squeezed if the term in brackets in
Eq. 13 is negative, which implies

S+(x, ω) − 1

1 − S−(x, ω)
< tan2 θ (18)

It follows that FT = Δθ/π , which is the fraction of the period during which the light
is squeezed, is given by

FT (x, ω) = 1 − 2

π
tan−1

√
S+(x, ω) − 1

1 − S−(x, ω)
(19)

For the special case of an ideal OPA, we can substitute S+ = 1/S− to get

FT (x, ω) = 1 − 2

π
tan−1

√
1

S−(x, ω)
(20)
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Fig. 5 10Log10S−(x, ω) versus FT (x, ω) for an ideal OPA

which can be solved for S− to obtain

S−(x, ω) = tan2
[
FT (x, ω)

π

2

]
(21)

which is valid for 0 < FT < 0.5. A plot of R = 10Log10S−(x, ω) as a function of
FT (x, ω) for an ideal OPA is shown in Fig. 5.Wewould not expect experimental points
to display squeezing greater than the amount allowed for the ideal OPA. Since most
OPA measurements were not ideal, we used the general formula Eq. 19 for FT (x, ω)

to reduce data.
The maximum fraction of time in a period during which squeezing can occur is

FT = 1/2, and this only occurs when x approaches zero, so the amount of squeezing
is slight.

4 Analysis of Data fromOPA

We analyzed data from 12 experiments conducted over the last thirty years [10,17–26].
We obtained values of FT and squeezing/antisqueezing from plots or from the text,
and estimated errors as much as possible. The most recent data is shown in Fig. 2
[10]. They fit their squeezing data (S− and S+) to the model, actually including a
small correction for the phase uncertainty, with excellent agreement. To get FT from
their data, we used the equation from the OPA model in terms of the arctangent in
Eq. 19. On the other hand, for the data in Fig. 3 we could do calculations of FT
graphically from S− and S+ and fromΔθ, from their plots. Thus, we can compare the
two methods. (Some papers plot the squeezing vs. time shown in Fig. 2 as squeezing
vs. phase difference. We treat both types of plots in the same manner with an assumed
equivalence between time and phase change that corresponds to the rate at which a
mirror is moved in degrees/second.) In about half the papers, we could compare the
two methods and found they agreed to within about ±8% rms. When we could use
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both methods to compute FT , we used the average in our plots. For Vahlbruch we
took points at three power levels (x = 0.8, 0.3, 0.1) [10]. For all other publications, we
had only one power level.

5 Interpretation of Squeezing and Observation Time

To compare the results of the QI and the OPA data requires the assumption that
the squeezing in the OPA analysis is equivalent to the squeezing in the QI analy-
sis as discussed by Marecki [9]. In the OPA case, the squeezing depends on the
phase difference θ between the local oscillator LO and the squeezed light SQZ, while
in the QI analysis the squeezing depends on the phase change ωoto occurring dur-
ing the observation time. In the equation for R, which expresses the QI, to is the
width of the time sampling function and ωo is the center frequency in radians/sec
of the frequency sampling function. From Marecki’s derivation, one would assume
that this corresponds to the center frequency of the laser probe. However, once we
are making measurements using BHD, where the detection is based on the inter-
ference between the LO and the squeezed light, the spectrum analyzer’s output at
a frequency ω is a quadrature noise measurement of the optical field at frequency
ωLO + ω. Consequently the appropriate expression for the BHD phase change in
radians during a measurement lasting a time to is given by the product ωto where ω is
the BHD measurement frequency. If we observe for a time interval M , which equals
the period of the squeezing S(θ, x, ω), then the phase change is Mω = π . Therefore
ωt = π(t/M), where t is the observation time. Defining the fractional observation
time FT = t/M , we conclude that ωt = πFT . Thus for a Gaussian time sampling
function we have

R(FT ) = 10Log10[Er f (
√
2πFT )] (22)

On the other hand, Marecki [9] just identified ωoto = τ as the fraction of the period
FT in which squeezing occurred, omitted the factor of π , and also had an additional
factor of 2, thus obtaining R(FT ) = 10Log10[Er f (2

√
2FT )].

For the squared Lorentzian time function we obtained

R(FT ) = 10Log10(1 − e−2πFT ) (23)

whereas Marecki did not have the factor π in the exponent.
Note that in the derivation of the QI, ωto is the phase change during an observation

of the variance of a quadrature component. Nothing is said in the derivation about
whether the field is squeezed or not. The QI appears to place a bound on the variance
for this phase change for any quadrature component, squeezed or not, during the
observation time. Assuming one physically can observe the field only when it is
squeezed, then we should obtain the value for R(FT ) as restricted by the QI.
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Fig. 6 Squeezing R in dB versus FT , the fraction of observation period that is squeezed, for a Gaussian
time function. The top dotted curve is derived as 10Log10[Er f (

√
2πFT ) ]. The middle dotted curve is

calculated directly from equations in Reference 9. The solid bottom curve is from the ideal OPA model.
Experimental points are shown with error bars

6 Comparison of QI Predictions and OPA Data

If we assume that we are observing the variance during half of the period then FT =
0.5, and the QI gives a value of R(FT ) whose absolute value could not be exceeded
with the maximum possible squeezing during the half period. Similarly, if we are
observing for the entire period, then FT = 1. By our understanding, the longer we
observe, the more likely we will have regions of variance that are above the vacuum
level and the bigger R will be. For the shortest times, we can have the most squeezing.

In Fig. 6 for a Gaussian time function, we have plotted our result for R(FT ) (Eq. 22,
top dotted curve), and Marecki’s result R(FT ) = 10Log10[Er f (2

√
2FT ] (middle

dotted curve), and R(FT ) for an ideal OPA (Eq. 20, bottom solid curve). The QI is
very restrictive; the degree of squeezing obtained in the experiments is greater than
that allowed by either form of the QI for all but one experimental point. All data are
consistent with the ideal OPA model.

The results for the squared Lorentzian time function were better than for the Gaus-
sian, as shown in Fig. 7. Almost all points violated Eq. 23, but only about half the
points violate Marecki’s version of the QI with no π (middle dashed curve).

One phenomenological approach to understanding the disagreement between the
data and the QI is to try reducing the argument in the equations to improve the agree-
ment of the QI prediction with the data. As the arguments in the error function and
the exponential decrease, the agreement does improve. Fitting the functional forms to
the data gives the plots as shown in Fig. 8. No points violate these best fits, but the
significance of them is not clear. Certainly for FT above about 0.3, they do not appear
to be sufficiently restrictive. They are not as restrictive as the ideal OPA curve.

We evaluated the variance for a symmetric trapezoidal window with a center region
TS long, and sloping sides that are each nTS long, normalized to 1. The results (dashed
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Fig. 7 R dB versus FT for a Lorentzian squared time function. Solid line, closest to the x-axis, is our result,
which includes a factor of π; middle dashed curve is Marecki’s result with no π; and the thick dashed line
is for an ideal OPA

Fig. 8 R dB vesus FT , showing the best fit for the Lorentzian (solid curve) and the Gaussian (dashed curve)
time functions. For the Lorentzian, the arguments are (1/3π) (or 1/3 for Marecki) of the theoretical values.
For the Gaussian, the arguments are (1/4π) (or 1/4 for Marecki)

curves) are displayed in Fig. 9 for a range of values of n from 0.001 (most negative
black curve, and f (t) is almost a square window) to 5.0 (dashed curve nearest the
origin) which corresponds to a nearly triangular window. The solid curves are for
the same n values, but a factor of π has been omitted in the argument in agreement
with Marecki. The ideal OPA bound is the solid curve crossing all other curves. As
the window becomes more triangular, the curves are less restrictive on squeezing and
do not agree with the data. Only the curve for the nearly square window (n = 0.001)
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Fig. 9 R dB (= S− dB) versus FT for a symmetric trapezoidal time function with a center region TS long
and sides nTS long. The dashed curves are for n = 0.001 (most negative R), 0.2, 0.5, 1.0, 3.0, 5.0 (nearest
the origin). The solid curves are for Marecki’s result, which omitted the π . The solid curve crossing the
other curves is for the ideal OPA

without the π is not inconsistent with all the data. Yet this curve clearly fails to be
sufficiently restrictive for values of FT greater than about 0.3 and predicts squeezing
exceeding that allowed by an ideal OPA. Mathematically this nearly rectangular
window is on the edge of instability, especially for low values of the power, and as
n decreases further, this window becomes a square window for which the limit is
R = 10Log100.

Clearly the form of the time window is very important, yet for all forms examined,
the resultant QI do not appear to have the right functional form or the numerical values
one might expect for a QI applicable to the experimental data.

7 Discussion and Conclusion

The mathematics of the derivation of the Quantum Inequality appear sound, and the
model for the OPA data has been experimentally validated, and it is consistent with all
the data we examined. Yet the QI and OPA model do not appear to be consistent with
each other. The QI was violated by all the data points for the Gaussian time window
and about half the points for the Lorentzian squared time window. Although other
windows may show improved results, these inconsistencies suggest a deeper problem.

The model for the ideal OPA gave the best results: no data exceeded its maximum
squeezing, yet the most recently published data came close. It also predicted that the
maximum duration of squeezed light does not exceed 1/2 the cycle, which agreed with
the data, yet was not predicted by the QI. Nevertheless, the ideal OPA is a model that
is an approximation with limitations.
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One of the issues mentioned was the potential conflict between specifying a time
function f (t) and an independent frequency functionμ(ω). To explore this effect, we
did a calculation assuming the Gaussian time function and a frequency function μ(ω)

which was given by the Fourier transform of the time function. Explicit calculation
showed that the resulting expression for the QI was similar to that obtained without
explicitly giving the precise form of the frequency window. Although this conflict is
real, it does not appear to be responsible for the systemic disagreement seen between
the QI and the OPA data.

Another possible issue might be the frequency dependence of the measured squeez-
ing for the OPA data as predicted by Eq. 13. The output beam of a OPA has the
Lorentzian squeezing spectrum with center frequency and halfwidth that depends on
the properties of the resonant cavity. Experimental data are typically taken with a
phase θ and frequency which give the maximum squeezing. Since the QI correlates
the fraction of time the signal is squeezed with the dB of squeezing, we may need
to account for the change in FT for frequencies away from the sideband used for the
measurement. We can compute an “effective” duration of squeezing FT E (x) which
is weighted by integrating the frequency over the variance of the squeezed vacuum.
The behavior of FT E (x) will depend on the range over which we integrate and the
halfwidth. This integration will increase the effective size of the FT E (x), essentially
moving all data points to the right, making the disagreement between data and the QI
worse, so this is not the explanation.

Another critical issue concerns the nature of the assumedmeasurement in the deriva-
tion of the Quantum Inequality. The assumption is that a measurement of the energy
density will bemade that lasts a fraction of a cycle of oscillation of the electromagnetic
field of the laser being employed. On the other hand, tomake an accurate measurement
using BHD requires observation for a number of cycles. It does not appear possible to
make a good measurement of the squeezing if observation is for a fraction of a cycle.
The measurement of the energy density in the OPAmethod is actually done over many
cycles. For a fixed phase difference between the LO and the vacuum signal SQZ, the
balanced homodyne detection automatically selects the corresponding energy output
which ismeasured continuously over asmany cycles of the laser light as desired, ensur-
ing significant accuracy. On the other hand, no corresponding mechanism appears to
be available for the measurement assumed to occur in the derivation of the QI. Thus,
there may be an inconsistency between the measurement assumed in the derivation
of the QI and the measurement method of the OPA. Marecki addressed this issue in
an analysis of the BHD method, stressing that in the theory of the QI all operators
are restricted to the frequency ωLO of the LO and time was 2π/ωLO periodic and
therefore ωLOt < 2π for all times [12]. It is not clear if there is an inconsistency and
if it is responsible for the disagreement between the QI and the experimental data.

The choice of window function is probably the most significant factor when apply-
ing the QI to real data. Mathematically, the choice of a window function is simple.
However, when comparing theory to data, it is not clear what window function is actu-
ally appropriate for the experiment being done even though the choice dominates the
restrictions due to the QI. In addition, Heisenberg and Bohr maintained that measured
fields were averages over space-time volumes, whereas Marecki (Eq. A.6) and Ford
(Eq. 1) only have a time average.
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This work represents the only comparison to date of experimental data to the the-
ory of a QI. Hopefully, the conundrum of the disagreement between the QI and the
OPA measurements will be resolved more fully in the future with interdisciplinary
collaborations and more experiments, and more detailed theoretical derivations. Our
results highlight the subtleties that can be implicit in theoretical derivations of QI, par-
ticularly in the proposed measurement process. Ideally, an unambiguous experimental
procedure could be associated with the theoretical derivations. These issues may also
affect the applicability of the QI that have been proposed for other situations.
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comments. We would like to thank the Institute for Advanced Studies At Austin and H. E. Puthoff for
supporting this work.

Appendix A: Derivation of Marecki’s Quantum Inequality

Marecki [9] derives a Quantum Inequality for squeezed light and squeezed vacuum
following the general approach of Fewster and Teo [27] and Pfenning [13]. We briefly
describe his derivation to clarify the comparisons to the OPA data. Marecki defines
the operator variance of the normally ordered electric field ΔE2(x, t):

ΔE2(x, t) = E2(x, t) − 〈E2(x, t)〉vac (A.1)

and considers a time sampling of the field squared

Δ =
∫ +∞

−∞
dt f (t)ΔE2(x, t) (A.2)

where

1 =
∫ +∞

−∞
dt f (t) (A.3)

He also mentions the possibility of including a frequency sampling function μp =
μ(ωp − ω0), peaked at ω0, that reflects the frequency response of the apparatus mea-
suring the variance. Since it is necessary to use a frequency sampling function to
get finite results for Δ, we will include it in our derivations. However, we note that
there is a potential consistency issue using an independently selected frequency sam-
pling function since the time sampling function f (t) implies a frequency selection
determined by its Fourier transform. Using the Coulomb gauge, the vector potential
is

Ai (x, t) = 1√
(2π)3

∫
d3k√
2ωk

×
∑

α=1,2

eα
i (k){a†α(k)eikx + aα(k)e−ikx } (A.4)
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where ωk = |k| and α denotes the two polarization states which are normalized and
orthogonal to k. In the exponentials, kx = −k · x + ωt represents the scalar product.
The electric field operator is

Ei = −∂Ai

∂t
(A.5)

The expectation value of the time sampled free vacuum field squared is

〈E2〉vac =
∫ +∞

−∞
dt f (t)〈E2(x, t)〉vac (A.6)

= 1

2(2π)2

∫
μkd

3kμpd
3 p

√
ωkωp2π fFT (ωp − ωk)

×
∑

α,β=1,2

eα
i (k)eβ

i (p)δαβδ(p − k) (A.7)

where we have used the commutator [aα(p), a†β(k)] = δαβδ(p − k) and included
the frequency function. The Fourier transform of the time sampling function f (t) is
defined as

fFT (ω) = 1

2π

∫ +∞

−∞
dt f (t)e−iωt (A.8)

Integrating Eq. A.7 over k, using the unity normalization of the polarization vectors∑
i

eα
i (k)eα

i (p) = 1 , and that fFT (0) = 1/2π because of the f (t) nomalization,

gives

〈E2〉vac = 1

(2π)3

∫
(μ2

pωp)d
3 p (A.9)

Substituting this result into the expression for the varianceΔ gives, after integration
over time,

Δ = 1

2(2π)2

∫
d3kd3 pμkμp

√
ωkωp

×
∑

α,β=1,2

eα
i (k)eβ

i (p){a†α(k)aβ(p)ei(−k+p)x fFT (ωp − ωk)

−aα(k)aβ(p)ei(k+p)x fFT (ωp + ωk) + HC} (A.10)

whereHC is theHermitian conjugate. To derive a quantum inequality,Marecki defines
a vector operator Bi (ω) and computes the integral over frequency of the norm of B
which has to be positive

∫ ∞

0
dωB†

i (ω)Bi (ω) > 0 (A.11)
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We choose

Bi (ω) = 1√
2π2

∫
d3 p

√
ωp

×
∑

α,β=1,2

eα
i (p){aα(p)( f 1/2)∗FT (ω − ωp)e

ipx

−a†α(p)( f 1/2)∗FT (ω + ωp)e
−ipx} (A.12)

and substitute this into Eq. A.11, and use the result in Eq. A.10. After taking the
expectation value with respect to state A, we obtain Eq. 4 in Sect. 2. Note that in
Eq. A.12, ( f 1/2)∗FT (ω − ωp) means the complex conjugate of the Fourier transform
of the square root of f (t).
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