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The Anharmonic Casimir Oscillator
(ACO)—The Casimir Effect in a Model
Microelectromechanical System

F. Michael Serry, Dirk Walliser, and G. Jordan Maclay, Member, IEEE

Abstract—The sizes of and the separations between the com-
ponents in some MEMS are already in the sub-micrometer
regime [1], [2]. Further miniaturization is carrying the MEMS
technology into a domain where some quantum mechanical ef-
fects, hitherto neglected, will need to be taken into account.
When separations between objects are small enough, certain
quantum effects become manifestly significant even if the masses
of the objects are too large by quantum standards. The Casimir
effect, for example, is the attractive pressure between two flat
parallel plates of solids that arises from quantum fluctuations
in the ground state of the electromagnetic field [3]-[5].' The
magnitude of this pressure varies as the inverse fourth power
of the separation between the plates.> At a 20 nm separation
between two metallic plates, the attraction is approximately
0.08 atmosphere. If one or both plates are nonconducting, the
pressure is smaller, roughly by an order of magnitude. As an
idealized MEMS component that takes account of the Casimir
effect, the Anharmonic Casimir Oscillator (ACO) is introduced
and shown to be a bi-stable system for certain values of the
dimensionless parameter, C, which characterizes the system.
The phenomenon of “stiction” in MEMS is then explained as
analogous to an ACO energetically descending to and settling
in an equilibrium state that is very stable against perturbations
for all values of C. A micromechanical switch based on the
bistable ACO is proposed and modeled. The dynamics of an
ACO, executing undamped periodic motion, are studied using
numerical and analytical solutions of the differential equation of
motion. Frequencies and amplitudes vary with C. C, in turn,
is inversely proportional to the fifth power of the parallel plate
separation. This extreme sensitivity makes the ACO an attractive
platform for designing rather sensitive sensors and detector
systems, such as submicrometer proximity sensors and microlever
deflection detectors for scanning probe microscopes. [120]

I. INTRODUCTION

N IC fabrication, the minimum feature size has decreased
by a factor of 2 every six years for nearly two decades (Fig.
1). The competition for delivering faster computing capability
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IThere exists a larger class of Casimir forces, of which the parallel plate
Casimir force is an example. These forces are all quantum mechanical in
origin. Casimir forces may be attractive or repulsive, depending on the
geometry of the surfaces [6], [7].

2The parallel plate Casimir pressure is identical to the retarded van der
Waals attractive pressure between two parallel plates [8]-[10].
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Fig. 1. Reduction of IC feature size. The minimum feature size on IC’s has
been reduced by a factor of 2 approximately every six years. (Source: Chen-
ming Hu, “Mosfet scaling in the next decade and beyond,” Semiconductor
International, vol. 17, no. 6, pp. 105-114, June 1994.)

in smaller computers is pushing the research and development
in lithography toward achieving yet smaller minimum feature
sizes. No doubt, the much aspired to further miniaturization
will carry over into the field of MEMS as well. Until now, the
spacings between adjacent surfaces in MEMS have typically
been of the order of a micrometer or larger. This picture
has begun to change. As the dimensions between MEMS
components decrease, there is a growing need for better
understanding of interactions between micromachined surfaces
at small separations. For example, the actuation scheme of
choice in MEMS is often electrostatic. To generate larger
actuating forces and torques with smaller applied voltages,
submicrometer separations are desirable [1]. On the other
hand, even at separations of the order of a micrometer there has
been repeated occurrence of the unwanted "stiction” phenom-
enon, wherein a thin micromachined membrane or cantilever
has been observed to unexpectedly latch onto an adjacent
parallel surface and remain attached to that surface [11], [12].
The proliferation of smaller and lighter components and the
reduction of the separations between these components will
require MEMS designs to account for some effects that have
been neglected until now.

One such effect, arising in devices that are subjected to
capillary forces during wet etching of sacrificial layers, was
discussed recently in this JOURNAL [13]. A less familiar one
is the parallel plate Casimir effect. With the Casimir effect
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Fig. 2. Casmir, electrostatic, and gravitation pressures. A comparison of the
attractive pressures due to the Casimir effect and applied electrostatic voltage
(V') between two flat parallel plates of conductors in vacuum. Also shown
are the gravitational pressure on 2-pm-thick (dashed line A) and 10-pm-thick
(dashed line B) silicon membranes.

in focus, in this paper we show that such effects may be
amenable to functionality when they are well understood and
exploited. The Casimir effect is the attraction between two
infinitely extended, parallel, flat plates that comes about due to
the quantum fluctuations in the zero point electromagnetic field
[1]-[3].% In the presence of the plates, the boundary conditions
on the electromagnetic field are altered from the free field
conditions. As a consequence, the vacuum electromagnetic
energy density in the space between the opposing parallel
plates is less than that outside of this space. The resulting
energy density difference gives rise to the attractive Casimir
pressure between the plates. The fundamental notion of a force
due to quantum fluctuations is quite general and applies to
other geometries. The force between the interacting bodies
is sometimes repulsive, depending on the geometry of the
system [6], [7]. This class of forces is collectively referred
to as the Casimir forces. There is an extensive body of
published literature on theoretical and experimental work on
the Casimir effect, as well as a renewed interest in the whole
class of interactions due to quantum fluctuations [3]-[10],
[14]-[27].

In the simple parallel plate geometry, the Casimir pressure
is the same as the retarded van der Waals pressure [10]:
For very small separations (typically below 20 nm), the
retardation, which is a result of the finite propagation speed
of the electromagnetic field, is not significant; in this case the
ordinary nonretarded van der Waals pressure, which varies as

3If the separation between the plates is much smaller than the lateral
dimensions of the plates (we estimate at least two orders of magnitude smaller)
the infinite extension of the plates is well approximated. Small departures from
the parallel geometry and from flatness are apparently allowed as demonstrated
experimentally [17]-[19]. The exact degree of sensitivity of the parallel
plate Casimir effect to these departures has been studied theoretically by
some groups [14]-[16]. We have found no published results of experimental
investigations on this subject.

1

Fig. 3. The Anharmonic Casimir oscillator. Due to the Casimir effect, the
moveable flat plate on the left, at § < 1, is attracted to the stationary flat
surface parallel to it on the right. The wall on the left is far from the movable
plate and the linear restoring force due to the spring is zero at § = 0.

the inverse cube of the separation, is present [8]-[10], [18].
When the free space plate separation, “d,” is large enough
(i.e., 20 nm or larger) so that the retardation is pronounced,
and at low temperatures (d < Fic/kT, where ¢ is the speed
of light in vacuum, % is Planck’s constant divided by 27,k is
Boltzmann’s constant, and 7 is the absolute temperature), the
attractive Casimir pressure, P¢, is given by

R
Pg = 77}1‘ (la)
and
0<n<1 (1b)

where the parameter 7 depends on the static electric permit-
tivity of the plates and the constant of proportionality, R, is
defined as

(Ic)

When both plates are perfectly conducting, 1 equals unity [8],
[9]. Then, the pressure, Pg, is equal to 0.0013/d* Pa (N/m?)
when the separation, d, is given in micrometers. This pressure
is 208 Pa when d is 50 nm. For two plates made of silicon, the
approximate value of 7 can be calculated to be 0.38 [8], [9].
This value can also be extracted from the experimental results
in [18]. Fig. 2 shows the variation with plate separation of the
Casimir pressure and of an attractive electrostatic pressure due
to an applied dc voltage “V™ across a parallel plate capacitor
in vacuum for four different values of V. For reference, the

" gravitational pressure on a 2 pum and a 10-pm-thick single

crystal silicon membrane (volume mass density = 2330 kg/m®)
are also shown, in dotted lines.

Although (1a) has been derived assuming perfectly parallel
plates, experimental evidence suggests that some departure
from the parallel geometry is permissible [17]-[19]. In fact,
to date almost all experiments that have measured the Casimir
pressure in agreement with (1a) have substituted at least one
curved surface (e.g., a convex lens) for a flat plate. The limits
of departure from the parallel geometry at which (la) no
longer holds have been the subject of some theoretical studies
[141-[16].
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Fig. 4. The normalized potential energy per unit area of the parallel plates.
C' = 0 corresponds to the absence of the Casimir effect; this reduces the
system to a simple harmonic oscillator. For C' < Cer(= 0.0819), the
potential energy curve displays a pair of local extrema, corresponding to a
stable and an unstable equilibrium state of the system. At C' = Co;, there is
an inflection point at § = 0.2. Finally, for C' > C.; no local extrema exist.

In this paper, we will argue that the Casimir effect may
be in part responsible for stiction in MEMS. Furthermore, we
will show that even in systems that do not exhibit stiction, the
Casimir effect may play an important role if the separations
are small enough. We assume that (1a) is valid for geometries
where the lengths and the widths of the parallel plates are finite
but much greater than the separation, d, between them. The
modeling is applicable to separations greater than or equal to
about 20 nm. We present an analytical-computational model of
the “ACO,” which we believe to be the first dynamic system
that takes into account the Casimir effect. We assume that we
can describe the system dynamics using classical mechanics
since the masses of the typical MEMS components are com-
paratively large. For simplicity, we will model our system with
7 set to unity. The results may be applied to nonconducting
plate configurations by simply inserting the appropriate value
of the parameter 7 where needed. This parameter can be
calculated for a given system using formulae and graphs in
[8] or [9]. For a handful of MEMS materials, experimental
values for 1 can be extracted from the data in [18].

II. GENERAL CHARACTERISTICS OF THE ACO

The geometry of the ACO is depicted in Fig. 3, where the
parallel plate configuration is defined by the stationary plate
on the right with a flat surface at 6 = 1 and the moveable plate
on the left with its flat surface at § < 1. In this figure, § = 0
denotes the normalized equilibrium position of the movable
plate in the absence of the Casimir pressure (i.e., in the absence
of the stationary plate on the right) and corresponds to the un-
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Fig. 5. For a given C < C¢; (e.g., C = 0.04), the normalized potential

energy has a local maximum, Umax, at émax, and a local minimum, Unin,
at 6pmin . For perfectly smooth surfaces, the absolute minimum of the potential
energy is infinitely large and negative and is located at § = 1.

stretched state of the spring. The moveable plate has but one
degree of freedom; it can only translate along the § axis. The
normalized displacement, §, of the moveable plate is defined
as the ratio of the nonnormalized displacement, w, of the
moveable plate to the nonnormalized position, wg(> 0), of
the stationary plate

w

6 .
Wo

&)

The restoring pressure due to the spring of elasticity constant
“k” (dimensions force per unit length per unit area) is linear
in the displacement 6.

In the presence of the Casimir effect, the pressure P(6) on
the moveable plate arises from two contributions: Py due to
the elastic spring and Pc due to the Casimir effect*

P(§) = Pe(8) + Po(6) = —kuod + — @)
0

R
(1=
We assume the system is conservative and define the potential
energy, U(6), per unit area of the moveable plate surface
facing the stationary plate such that P(§) = — wio 8%—555). Then

U(6) is found to be
C
——) ®

U(6) = Up(8) + Uc(6) = Ek(%‘sz B %(1 —6)3

where U and Ug correspond to Py and P, respectively.
The unit of elastic energy, Fy, and the positive dimensionless
characteristic constant, C, are defined below

Ej, = kw? (6a)
R
C= Tl (6b)

4At separations below 20 nm between plates with atomically smooth
surfaces, the attractive interaction between the plates is not well described
by (la) and therefore (4) is not valid. For these cases, the system’s behavior
is not well quantified by the rest of the mathematical analysis in this paper.
The same may be said about the cases wherein the roughness of the surfaces
is comparable to the mean separation; then, the attractive force may be a
complex function of the surface topology and (1a) and (4) are again invalid.
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Fig. 6. For C' < C., the minimum of the potential energy is always located at 6pin < 0.2, and the maximum at dmax > 0.2.

The relevant physical interpretation of C is the ratio of the
force on the movable plate due to the Casimir Effect at no
deflection (i.e., at w = 0) to the force on the movable plate
due to the stretched spring at full deflection to the right (i.e.,
w = wp). Fig. 4 shows several normalized potential energy
curves for different values of the parameter C'. The horizontal
line denoted by “F = 0.046” represents an arbitrarily chosen
energy level for the ACO. This line will be used in Section ITI.

For C greater than the critical value C(= 0.0819), the
moveable plate collapses into the stationary plate, located at
6 = 1, regardless of the initial separation between the two.
Fig. 5 shows that for 0 < C < C¢;, the normalized potential
energy has a local minimum, Uiy (= U(6min)/Fr), at Omin,
which is closer to the origin of the §-axis than to the stationary
plate, and a local maximum, Upax (= U(0max)/ Pk ), at Smax,
closer to the edge of the stationary plate at § = 1. These
extremes correspond to a stable and an unstable equilibrium
state of the system, respectively

oU(6) S
85 | (man) 0, (72)
0<C<Cly. (7b)

We define a “separation state” of the ACO as one in which
the moveable plate is located at or oscillating about the stable
equilibrium state at ,,;, and does not have sufficient kinetic
energy to move to the right, past dmax.

With C subject to condition (7b), we insert U(8) from (5)
into (7a) to obtain an expression that relates a given value of
C to a corresponding pair of iy and Sp.x values '

e (1 B 5(';21))4 =C ®)

{(max)

Fig. 6 is a graph corresponding to (8). As C' approaches
Cer(= 0.0819) from below, the shape of the potential energy
curve changes (Fig. 4) such that the local extrema, located
at Omin and 8p,ay, converge to and are finally replaced by the

inflection point at § = dmin = Omax = 0.2, which occurs when
C = C,,. For C greater than C.,, there are no local extrema.
Fig. 6 also shows that for all values of 0 < C < C,,, such as
0.05, the corresponding values for 6y, and .y are smaller
and larger than 0.2, respectively.

The potential energy also has an absolute minimum at § = 1
for all values of C, as depicted in Fig. 4. If the parallel
plates had perfectly smooth surfaces, this minimum would
be infinitely deep. In a real device, however, which may be
approximately modeled as an ACO with less than perfectly
smooth surfaces, the effective depth of this minimum is finite
because the asperities on the opposing parallel surfaces will
always ensure a nonzero normalized minimum gap, &, between
the plates; we shall refer to such a system as an “ACO device”
hereafter.> Now we define the “contact state” of an ACO
device as that state in which the moveable plate has collapsed
into the stationary plate so that § = 1—£. An ACO device in its
contact state is a simple, yet plausible, picture that can explain,
for example, the unfortunate fate of a thin silicon (or other)
membrane or cantilever beam that is designed to function as
a transducer but is pushed too close to an adjacent flat surface
by a larger-than-expected signal. Capillary forces encountered
during the wet fabrication of some MEMS have been shown
to draw parallel surfaces into an unexpected intimate contact
{11}, [12], which remains even after the liquids evaporate. This
sustained contact may also be explained as the consequence

SFor an ACO device, the meaning of § is modified as follows. We imagine
an infinitely smooth flat plane inside the moveable plate and perpendicular
to the § axis. & now stands for the position of this imaginary plane along
the 6 axis. Also, 6 = 1 is now the position of a similar plane inside the
stationary plate. It is the distance between these two imaginary planes that
now defines the parallel plate separation, which is finite, but approaches zero
as the normalized mean surface roughness, £/2, on the two plates decreases.
At contact, the expression for the attraction between the plates may be a
complex one, depending on the topology of the rough surfaces. Even prior to
contact (at separations below about 20 nm for atomically smooth surfaces), the
attractive pressure may vary with the inverse third, rather than fourth, power
of the separation. The practical limit of applicability of (1a) near contact
depends on the surface roughness, and for atomically smooth surfaces such
as mica the model has to take into account the transition from the retarded to
the nonretarded regime.
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Fig. 7. (a) With C fixed (= 0.04) and for Upin < E < Umnax, the

local maximum of the potential serves as a classical barrier that confines the
ordinate of the moveable plate either to the left or to the right of émax. (b)
Phase space orbits corresponding to the energy levels depicted in (a). For
Umin < E < Umax, there is a separation branch and a contact branch for
each energy level. In the absence of the Casimir effect, the smallest separation
orbit shown would be a perfect circle, centered at the origin of the coordinate
system, while the corresponding contact branch would be missing.

of the parallel plate system “falling” into and subsequently
remaining in the attractive potential well, due in part to the
presence of the Casimir effect, where the elasticity forces are
insufficient to restore separation.

For C < C,, the equilibrium state at Omyin, along with
the contact state at 6 = 1 — &, render an ACO device a
bi-stable system that may, after some modifications, define a
functional switch—the Casimir switch. Before presenting the
Casimir switch in Section IV, we study some of the dynamic
properties of the ACO.
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Fig. 8. Numerical solutions, in the normalized-time domain, of the differ-
ential equation (9) for C' = 0.04 at the three lowest energy levels shown in
Fig. 7(a). Departure from harmonicity is noticeable for £ = 0.02.

III. DYNAMICS OF THE ACO

A. Energy Considerations

The differential equation of motion for an ACO in the
absence of dissipative forces is

9%5(1) | 1 dU(6)
W5z T 96

=0 )



198

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 4, NO. 4, DECEMBER 1995

7 ¥
C=0.04_E=—0.012 C=0.04_E=0.004—
V V
‘§ 0.1 "§ 0.1
Q, Y
s £
3 3
T oo T ou
N N
IS IS
g g
3 )
= 0001 = 0001
0.0001 05 1 5 2 2.5 3 0.0001 05 i 75 2 25 3
normalized frequency (f) normalized frequency (f)
(a) (®
1
C=0.04—FE=0.02
X
N ol
3
=
Y
S
3
N oo
N
=
£
N~
3
S o001
0.0001 0.5 7 7.5 2 2.5 3

normalized frequency (f)

©

Fig. 9. Discrete Fourier spectra of the time domain oscillations in Fig. 8. All the amplitudes in a given spectrum are normalized to that of the

fundamental frequency in that spectrum.

where m is the mass of the movable plate per unit area of that
surface that faces the stationary plate (Fig. 3), and ¢ denotes
the time. Equation (9) is multiplied by wo 92 dr and integrated
once with respect to the re-scaled time 7(=+/1/mt) to obtain
the equation for the conservation of the total mechanical
energy, £/, which is normalized by the elastic energy Fp in

(10)
w
2

For a given value of C' < (., Fig. 7(a) indicates that
the motion can exhibit different characteristics for different
values of the normalized energy E. In this figure, where the
potential energy curve is for C = 0.04, we see that for
Unin < £ < Upayx, the local maximum of the potential
serves as a classical barrier that confines the position, §, of the

1
Ey,

96(T)
or

2
) +U(6)| = constant = E. (10)

moveable plate either to the left or to the right of §y.x. For
8 > Omax, the moveable plate is expected to be bound closely
to the stationary plate at § = 1. For § < épmax, as long as E
remains well below Uy, we expect nearly harmonic motion
with the classical turning points, é:, given by U(6;)/Fy = E.
When £ is marginally less than Upmas, €.g.. E = 0.02 in Fig.
7(a), we expect the motion to exhibit marked departure from
harmonicity for § < 8yax. When E > Up,y, the barrier will
not confine the motion of the movable plate.

A study of the phase space orbits corresponding to the
energy levels in Fig. 7(a) help in clarifying the nature of the
motion. This can be seen in Fig. 7(b), wherein the quantities
plotted on the axes are the normalized position, §, and the
normalized momentum p, which is defined as p = ik%,
of the moveable plate. For three of the arbitrarily selected
energy levels in Fig. 7(a), i.e., for £ = —0.012,0.004, and
0.02, the corresponding left branch orbits in Fig. 7(b) are
closed and represent bound, periodic motion. We shall refer
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to these closed branches as “separation branches” in reference
to the separation of the parallel plates during the motion of
the movable plate. Each of these three energy levels also
has a right branch orbit, representing motion closer to (or
in contact with) the stationary plate; these branches will be
called “contact branches” since the movable plate contacts
the stationary plate § = 1 [not shown in Fig. 7(b)]. The
separation branch orbit of the lowest energy state shown,
(E = —0.012), indicates nearly simple harmonic motion.
In the absence of the Casimir effect, this branch will be a
perfect circle, centered at the origin of the coordinate system
where 6 = p = 0, while the corresponding contact branch
orbit would be absent. For the next energy state depicted
(E = 0.004), the separation branch orbit exhibits more
asymmetry, indicating stronger anharmonicity. At £ = 0.02,
the separation branch is significantly elongated and is close to
merging with the corresponding contact branch orbit on the
right. For E = 0.05 (>Uyax), the left and right branch orbits
have merged; the corresponding motion would be that of the
moveable plate falling, regardless of its initial position, into
the deep attractive Casimir potential well and colliding with
the stationary plate. In an ACO device, when the moveable
plate with its finite kinetic energy (p > 0) hits the stationary
plate, it would probably be reflected with some loss of energy
and reappear on a lower energy orbit at the bottom of the
phase space plot (p < 0). After several reflections, the kinetic
energy would dissipate completely and the moveable plate
would sustain contact with the stationary plate.

We can also envision the situation in which F is kept
constant, while the value of C is altered, as depicted in
Fig. 4. For example, assume £ = 0.046 and C = 0.02,
and that the moveable plate is in the separation state. If
C were now increased to 0.03 or a larger value, with no
change in the energy F, the height of the potential energy
barrier would decrease such that at the new 6.y the movable
plate would have enough kinetic energy to continue on to the
right, past the lowered potential energy barrier, and collide
with the stationary plate. This feature can be exploited as
a switching mechanism in a micromechanical switch (see
Section IV).

B. Anharmonic Oscillations in Separation States

We now consider the oscillations of an ACO in separation
states. We defined

6(7) = bmin + AS(T)

with Aé(7) denoting the normalized deflection of the move-
able plate from dy,in, Which is related to C' through (8).

For C = 0.04, the numerical solutions of the differential
equation of motion (9) for Ad(r) and the corresponding
discrete Fourier spectra.® are plotted in Figs. 8 and 9 for

6The discrete Fourier transform, “bs,” of a list of data points “a,”
of length “n” in a A8(r) versus ¢(=vkr) graph (Fig. 8) is defined
as o= Sr_, ar e2™(r=1(s=1}/n and s plotted, after the necessary re-
scaling and shifting of the frequency axis, in an amplitude versus normalized
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Fig. 10. Variation of C and €2g, the frequency of oscillation in the quadratic
approximation of the potential, with &min. w(=y/k/m) is the natural
frequency of the harmonic oscillator in the absence of the Casimir effect.

three of the energy values in Fig. 7. The horizontal axes in
Fig. 8 correspond to the quantity Vk7(= {/£¢), which we
define as ¢. The value of Aé(7) at the dashed lines in Fig.
8 equals byax — Omin- These solutions are exact to within the
limitations of the computational techniques employed [28]. For
E = —0.012, Fig. 8(a) shows the motion as very nearly simple
harmonic; the normalized period of oscillation for this plot is
T = 1.1.7 The peak amplitude in the corresponding Fourier
spectrum [Fig. 9(a)] appears at the normalized fundamental
frequency, fo =2 0.9 (T = 1,f, = 1 for a simple harmonic
oscillator). The spectrum also shows peaks at zero, 2fy, and
3fy. Fig. 9(b) shows that the relative contributions of the
zero frequency term and the harmonics of the fundamental
frequency increase as F increases to 0.004. In Fig. 8(c)
(E = 0.02), the motion shows noticeable departure from
simple harmonicity with a rounding of the plot for large
positive values of A§(r) where the moveable plate is close
t0 Omax. The increased period reflects the stronger influence
of the Casimir effect. Also, the spectrum [Fig. 9(c)] shows a
significant reduction in the value of the fundamental frequency,
as well as sizable contributions at zero frequency and at 2f,
and 3fy. These features are consistent with the shape of the
separation branch orbit corresponding to £ = 0.02 in the
phase space [Fig. 7(b)]. With E approaching Upax, the growth
of the zero frequency term can be viewed as corresponding
to an increase in the mean amplitude that arises because the
moveable plate spends more time at larger positive values of
0, near bpax.

Next, in order to explore the dynamics of the ACO in
separation states more fully, the method of successive approx-
imations is used to find an approximate analytical solution to
the differential equation of motion. We use a four term Taylor
series expansion of the first derivative of the potential energy

frequency (f) graph (Fig. 9) [28]. All amplitudes in each spectrum are
normalized to that of the fundamental frequency mode in that spectrum.

7The normalized period T, and the normalized frequency, f, are related
to the nonnormalized period, 7', and the nonnormalized frequency, f, as

_ m _ 1 [E
T =2n,/2T, f= ﬁ\/%f.
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Fig. 11. Contour plots for the sum of the amplitudes A(= Ag + A1+
Ag + As). For a given value of C (or dmin), the maximum allowed value
for A in separation state oscillations is given by the three-way intersection
of the Amax curve, the dashed line corresponding to the C' value of interest,
and one of the contour lines. The contour lines depicted represent the A
values 0.05, 0.1, 0.15, 0.2, 0.25, 0.30, 0.35, .40, 0.45, 0.50, 0.55, and 0.60.
For example, for C' = 0.04, the maximum allowed value of A is 0.45. The
contribution of A1 to this value of A can be read from the horizontal axis. This
is approximately 0.41. This value of A; can then be used in Fig. 12 to find
the corresponding values for the three-term approximation of the frequency,
€, as well as the amplitudes Ap, Az, and As.

[see (5)] about ppin

1 0U(6) 1, ;
et 2 — g )
wo 6 g |V e T U o AO(0)
1
+ 5U’//|émin (A5({;))2

1
+6U(4)|5min(A6(t))3] @an

where §(t) = Smin + A6(t), and a prime denotes the partial
derivative with respect to 6. The first term in the series
expansion vanishes, and we define the remaining expansion
coefficients as follows:

x=U"|, (12a)

o= %U”’[ _— (12b)
1

8= gU<4>|5m. (12¢)

Substituting this expansion in (9), we look for a series solution
for the differential equation. We write the solution in the form

AS(t) = Aby () + Ada(t) + Ads(t) + - - 13)
and start with the time harmonic Ansatz
Ab1(t) = A; cos(Qt) (14a)

where (=2 f) is the exact nonnormalized angular frequency
of oscillation of the ACO which in turn is written as a series

sum
Q=+ + Qs+ ---. (14b)

Q s equal to g if we use the linear approximation of the
series expansion in Eq. 11 [29]. This would correspond to a

quadratic approximation for the potential. The expression for
Qo is then given as

1/2
Qoi X (: k {1 _ 45&} ) (15)
wy Y m m 1—bmin
where the expression inside the parentheses is obtained by
applying the definition (12a) to (5) and then substituting for C
from (8). The successive terms in the series in (13) and (14b)
are calculated using a variation of the method of successive
approximations that requires the vanishing of the amplitudes
of the resonant term contributions to the series solution in

(13) [29]. The first correction to 2 vanishes, and the second
correction is found to be quadratic in A;

(16a)

(16b)

The first two corrections to the time harmonic Ansatz are found
to be

Abo(t) = Ag + Az cos(20Q) (172)

and

Ads(t) = As cos(32) (17b)

where the zero frequency or constant displacement term, Ao,
and the amplitudes of the higher harmonics vary as the second
and the third powers of A;®

o=~ A3 (18a)
04
Ay = —A? 18b
2= 5 (18b)
_[ g 3

The dependence of the exact fundamental frequency, {2, on
the amplitude Ay and the appearance of the higher harmonic
contributions are due to the nonlinear nature of the Casimir
effect. Since x,«, and f, are all defined in terms of the
derivatives of the potential energy evaluated at 6y, in light of
(8) one can relate Qy and C through 6. Fig. 10 shows this
three-way correspondence, where C and 2y (normalized to the
natural frequency w(= +/k/m) of the harmonic oscillator in
the absence of the Casimir effect) are plotted as functions of
dmin- In Fig. 11, we show several contours corresponding to
equally spaced values (0.05,0.10,...,0.60) of the sum of the
amplitudes, A(= Ag + A1 + Az + A3), as a function of A;
and C (or 8min). Also shown here is the curve that indicates
the maximum allowed value of the sum A for a given value
of C < 0.075 if oscillatory solutions in a separation state are
to exist. This is the Aax curve, which is plotted thicker than
the contours. For a given value of C (or §yin), the maximum
allowed value of A is determined by the three way intersection
of the A,y curve, the dashed line corresponding to the C
value of interest, and a single contour plot. For example, for
C = 0.04, the Anax curve intersects the dashed line and

8The sign of the 8 term in the expression for Az is incorrect as given in
[291.



SERRY et al.: THE CASIMIR EFFECT IN A MODEL MICROELECTROMECHANICAL SYSTEM 201

the A = 0.45 contour at one and the same point; thus the
maximum allowed value for A is 0.45 when C' = 0.04. In Fig.
12(a)-(d), we have similar graphs displaying contours of the
normalized amplitudes Ag/A;, —Az/A1, and —A3/A; as well
as contours of the three-term approximation to the fundamental
frequency, Q= Qo + Q4 + Q2), normalized to the natural
frequency, w. For reference, the A, curve is also included
in these figures. Fig. 12(b)-(d) shows normalized amplitudes
that match the numerical results plotted in Fourier spectra,
such as those in Fig. 9. Interestingly, the five-term, fourth-
order Taylor series expansion of the potential energy function
approximates the portion of the exact potential energy curve
where oscillatory motion in separation states are allowed more
accurately as C gets closer to C,,. Fig. 13 shows the exact and
the approximate potential curves for C = 0.04.

Although our analysis here did not account for damping,
the analysis has shown that the dynamics of an ACO device
can change dramatically with C. Furthermore, we note that
C(=R/kw]) itself is extremely sensitive to changes in wy,
which may be a controllable (e.g., piezoelectrically) physical
dimension in a MEMS. For example, the depth of a sub-
micrometer-deep micro-cavity can be electrically modulated
if the cavity walls are made of piezoelectric materials. A thin
silicon membrane suspended above a such a micro-cavity may
be modeled as an ACO with variable C. The dependence of C
on the fifth power of wg makes the ACO an attractive platform
for rather sensitive sensors and detector system designs. Such
designs will most likely have to take account of dissipative
forces, especially if the dynamic characteristics of the ACO are
to be exploited. For systems designed to work in the absence
of vacuum, fluid (e.g., air) damping is the most important
dissipative mechanism, followed by damping inherent to the
oscillator. The fluid damping for an ACO will probably be
of the squeeze-film type because of the extremely small
separations required to exploit the Casimir effect [30]. In the
absence of strong fluid damping, the contour plots in Figs.
11 and 12, along with the frequency variation curve in Fig.
10, may be used to study the Casimir effect in the periodic
motion of a MEMS component wherein a linear restoring force
is present and the oscillator’s structural damping is negligible.

IV. THE CASIMIR SWITCH

As shown in Section II, the ACO is a bi-stable system for
C < Cq. Also, at the end of Section III A, we briefly discussed
the possibility of changing C' while keeping E constant (Fig.
4). The phase space plots for four of the potential energy
curves in Fig. 4 are shown in Fig. 14 for F = 0.046. Any
separation state, along with the contact state of an ACO device,
may define an “open” and the “closed” states, respectively, of
a Casimir switc.’

The switching of an ACO device between its open and
closed states may be accomplished by changing the value of
C and/or by introducing additional forces into the system. A
large change in C, for example, can be affected by slightly
varying the parameter wq as, for example, was discussed in

9Here, by an open state we shall mean a separation state for which
E = Upin-

the last paragraph of Section III. The additional forces may
be electrostatic, mechanical, pneumatic, etc. We will briefly
discuss some possibilities shortly. However, to quantify the
stability of the open state of a switch, we shall first characterize
the height of the potential energy barrier that separates the
open state from the closed state for a given value of C < C.,.
To this end, we define the quantity P, as a measure of the
average pressure required to close the open switch by forcing
the moveable plate to the right, past 6,,.x, and into the contact
state

U(émin)
Wmax — Wmin
_ i U(émax) - U((smin)

Wo 6max -

AU _ U(bimax) =
Pba,r(éma,x, 6min) = M — ( x)

5min

19)

where Wmax and 8., are related to wqg as in (3). Next, we
substitute the expression in (5) for the potential energy U(6)
in (19), and use (8) to obtain a relation between Py.., 6min,
and Oy, for a given value of C < Cy,

Ey,

Pyor = —
bar 6'11}0

[5(5max + 5min) - 2] (20)
Defining the normalized barrier pressure II(= Py, /kwo) and
noting that ., + dmax is always less than unity, we arrive
at an upper limit of 0.5 for II
1 1
II= 6[5(6"’“ + 8min) — 2] < 5 @2n
Using (8), we can find the variation of 1I with C'. This is shown
in Fig. 15, wherein we see that the normalized pressure, II,
required to switch from the open state into the closed state
decreases with increasing C.

The switching from an open to the closed state may be
realized by increasing the parameter C from an initial value
smaller than C., to one larger than C,,. In principle, this is
possible even if the cavity between the parallel plates is air
tight and contains a gas. In that case, C, is different than
0.0819. As discussed earlier, in an ACO device, the additional
kinetic energy provided for the moveable plate by lowering the
potential energy barrier would eventually be lost completely
due to dissipative interactions, and the contact state would be
established. Thus, to subsequently switch from the closed state
back to an open state, reducing the value of C' alone will most
likely not be sufficient. This is true even though at or near
contact, the expression for the Casimir pressure is no longer
valid and the depth of the potential well is finite. The nature
and the magnitudes of the attractive interactions at or near
contact will be altered significantly by surface roughness and
may no longer be represented by a simple expression of the
type in (1). Nonetheless, experimental evidence suggests that
in the contact state the attraction is rather strong [11]-[13]. The
switch cannot be brought out of contact unless somehow §max,
the value of which now depends on the form of the attractive
forces near contact, is pushed to the right past 6 = 1 —£. One
possibility to achieve this may be increasing wo by moving
the left end of the spring in Fig. 3 further to the left and/or by
increasing the spring constant, %, so that the elastic restoring
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Fig. 12. While the Amax curve cannot be used here exactly as in Fig. 9, it helps in separating those values of A; that are definitely not allowed in
separation state oscillations; this curve is included in all parts (a)-(d) of Fig. 10 and appears thicker than the contour plots. (a) Contour plots for the
three-term approximation of the fundamental frequency, W, as normalized to the natural frequency, w(=+/k/m), of the harmonic oscillator in the absence
of the Casimir effect. The contours plotted correspond to normalized frequency values 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 0.975. (b) Contour
plots for the normalized zero frequency amplitude, Ag/A;. Except for the first step, the successive contour values are equally separated: 0.005, 0.01,
0.02, 0.03, 0.04,...,0.28, 0.29, 0.30. (c) Contour plots for —As/A1. Contour values are 0.0010, 0.0025, 0.0050, 0.0100, 0.0150, 0.0200, 0.0300, 0.0400,
0.0500, 0.0600, 0.0700, 0.0800, and 0.0900. (d) Contour plots for —A3z/A;. Contour values are 0.00001, 0.00010, 0.00025, 0.00050, 0.00075, 0.00100,
0.00150, 0.00200, 0.00250, 0.00300, 0.00350, 0.00400, 0.00450, and 0.00500.

force on the moveable plate is increased until it is sufficient to  example, a large enough increase in wg may induce plastic
overcome the attractive forces, thus releasing the moveable deformations in the “spring” before it serves to detach the
plate from contact. This may not always be practical. For paralle]l plates.



SERRY et al.: THE CASIMIR EFFECT IN A MODEL MICROELECTROMECHANICAL SYSTEM 203

UE,

approximate -

-0.02

exact /

Fig. 13. Potential energy for C = 0.04. The two plots are those of the exact
and the four-term Taylor series expansion about the local minimum for the
potential function in (5).
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An alternative approach is to reduce the depth of the
potential well corresponding to the contact state by introducing
additional external forces. With a shallower potential well at
contact, it may be possible to switch from the closed to an
open state with smaller, more manageable changes in C, thus
avoiding the extremely small values of this parameter. One
such switch assist mechanism may be based on an air tight
ACO with an isothermal gas trapped in between the parallel
plates. This gas is assumed to obey the ideal gas law at constant
temperature; thus its pressure is inversely proportional to its
volume (i.e., inversely proportional to 1 — é for perfectly
smooth surfaces on parallel plates). The modified potential
energy per unit area with the trapped gas present is given as

U(6) =Ur+ U+ Ua
:Ek<152— l_¢

27 T 3(1-6)3
-6 1- 5min
1
el ()
(22a)
with the weight parameter C'4 defined as
Cy= M (22b)
k wo

Here, P; is the gas pressure on both sides of the moveable
plate in Fig. 3 when this plate is at §myn, as defined by (7)
applied to (5). Fig. 16 describes qualitatively what happens
when Cj is changed in an ACO device. For a fixed value
of C (ie., for C = 0.01), as Cy4 is increased, the depth of
the potential well at contact (i.e., at § = 1 — &) is reduced as
Smax is shifted to the right. It is important to note that near
the contact state (i.e., § = 1 — &), the curves in this figure are
only qualitatively describing the system in that they show a
negative slope for the potential there. The exact depth of the

0.8t E=0.046 C=0.0
0.6 C=0_.03
04 Cc=0.02

0.2

N
02 /A
04 02 0 02 04 06 08 1
)
Fig. 14. The phase space plots corresponding to four of the C values in

Fig. 4. The total normalized mechanical energy of the ACO in this figure is
E = 0.046.
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Fig. 15. The normalized pressure, I1, required to switch from the most stable
open state, wherein the kinetic energy is zero(E = Upmin ), into the closed
state has an upper bound of 0.5, and decreases with increasing C.

potential energy minimum at contact depends on the nature
and the magnitude of the forces at contact. If the potential
well at contact is sufficiently shallow, it may be possible to
apply a small additional force, and/or to affect a small decrease
in C, to switch from the closed to an open state.

We also note in Fig. 16 that the proposed pneumatic switch
assist mechanism may serve to simply modify the height of the
potential energy barrier and thus may also be utilized to control
the relative stability of the open switch position. This may be
used to design ACO threshold signal detectors, wherein the
magnitude of the threshold signal is related to the height of
the potential energy barrier.

If a dc voltage, V, is applied between the parallel plates. The
resulting attractive force between the plates serves to reduce
the height of the potential energy barrier between Oni, and
Smax. This may be used in defining a lower bound on the
strength of perturbations for which an initially open switch
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Fig. 16. For a fixed value of C'(= 0.01), the depth of the potential well
at contact (6 = 1 — &) is reduced as the initial gas pressure at § = &min
is increased on both sides of the moveable plate of an air tight ACO cavity.
This can be used to lower the force required to switch from the closed to an
open state. The increase in initial gas pressure, F; , is reflected in an increase
in C A (O( Pi). :

will close. The corresponding additional potential energy term,
Ugy, is given below

U(6) = Up + U + Ug
(1, 1 C 1
‘Ek<25 3(1- o) CEH—&) @30

where the weight factor Cg; is defined as

. EQVZ
- ZEk Wy

Cri (23b)
with €¢ denoting the effective dielectric permittivity of the
medium between the conducting surfaces. This medium con-
sists of a thin insulating layer (on one or both conducting
surfaces) that isolates the conductors when the switch is closed
(e.g., an oxide layer on heavily doped SCS or polysilicon) and
a gas that fills the space between the plates when the switch is
open. Equation (23) assumes that the gas is not trapped in this
space. The variation of the normalized barrier pressure with
C is plotted for several values of Cg in Fig. 17. This figure
also shows the value of C. (corresponding to zero barrier
pressure) reducing with increased applied voltage.

In closing this section, we note that at least one of the
two switch positions in a functional Casimir switch may be
maintained with no electric power required.

V. SUMMARY AND CONCLUSION

The Anharmonic Casimir Oscillator (ACO), a simple dy-
namic system that includes the attractive parallel plate Casimir
pressure, has been modeled. We have characterized this system
by the positive dimensionless constant C(= R/kwg). For
C > C.(220.082), an ACO device is always in its “contact
state,” in which state the parallel plates are in contact with
each other. For C' < (., the ACO may be a bi-stable system.
The moveable plate can execute anharmonic oscillations about
one of its stable equilibrium states; this is an ACO device
in a “separation” state. The other stable equilibrium state is
the contact state. Oscillations of the ACO in the separation

II

0.35
03
0.25
0.2
015
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0.05

C

0.02 0.04 0.06 0.08

Fig. 17. For a given value of C, applying a dc voltage V(Cg o V?)
across the conducting parallel plates, separated from each other at contact
by an insulating layer, will reduce the stability of the open switch position
against perturbations.

state were investigated analytically and computationally. It was
argued that the sensitivity of the system dynamics to changes
in C and the feasibility of changing C' in a MEMS device
made the ACO a platform for designing sensitive detectors
and sensors.

Next, we considered a mechanical switch based on the ACO.
External forces, or changes in the system parameters (changing
C) can cause an ACO device to switch from an open state to
the closed state. It was shown that the open position of such
a switch has limited stability against perturbations and that
this stability may be improved by introducing switch assist
mechanisms. We have also argued that the switching action
from open to closed may be realized by merely changing C,
while switching from the closed to an open position will most
likely need to be effected in the presence of switch assist
mechanisms.

The ACO modeling presented here was intended to provide
some insight into the role of the Casimir force in more complex
MEMS. It was also intended to draw attention to the roles
that quantum fluctuational forces in general may be playing in
MEMS as device dimensions and separations become smaller.
With a good understanding of the elastic forces involved, the
ACO model may be used as a basis to estimate the contribution
of the Casimir effect to the stiction of device components
in MEMS. Furthermore, it appears that the attractive force
between parallel surfaces may not always have to be dealt with
as a nuisance; rather, it may be manipulated to perform useful
tasks just as capillary forces have been utilized to actuate
MEMS components. Dynamic characteristics of the ACO may
be used to design small gap resonators based on the Casimir
effect.
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