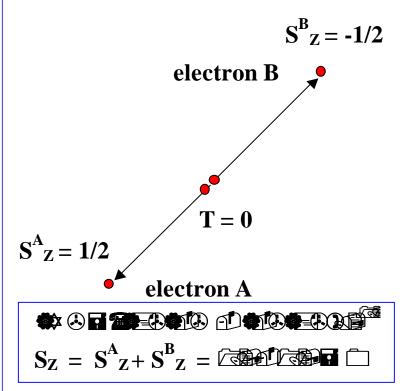
Feasibility Of Communications Using Quantum Correlations

G. Jordan Maclay, Quantum Fields LLC Collaborators:

Roger Lenard, Sandia Consultants

Potential Advantages of Communications Using QM Correlations


- No antenna needed, no broadcast power
- Very secure with high data rates
- Not line-of-sight
- No interference due to intervening medium
- No limitation on distance
- Faster than light??? Causality???

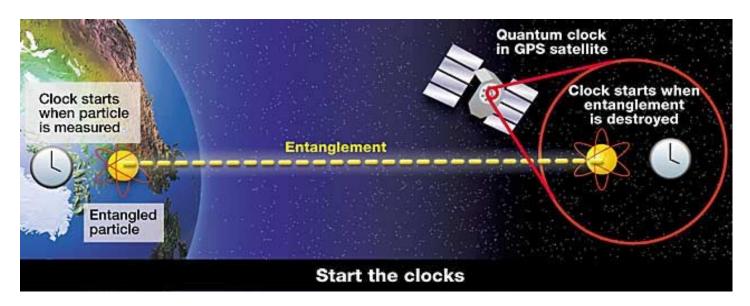
Quantum Correlations or Entanglement

- An entangled system consists of two or more quantum objects (atoms, photons etc) each of which carries information about the other.
- A single wavefunction characterizes the state of the system and is not a product of wave functions for each element of the system.
- The entire system cannot be analyzed as separate subsystems. In quantum mechanics there is no reality to the separate subsystems or objects.
- The entanglement persists no matter how far apart the atoms become, as long as the quantum state is unchanged.

Einstein-Podolsky-Rosen (EPR)-Bohm-Aharonov Gedanken Experiment

- Two electrons are in a S=0 state (zero total spin)
- At T=0, the electrons fly apart from each other
- The total spin remains zero
- Measurements of the spins are correlated so the total measured spin Sz is always 0, for any z, chosen at any time

Results of Recent Experiments With Entangled States


- Verified non-local quantum mechanical correlations in polarization of photons
 (total spin = 0) over distances up to 10 km
- Verified continuous correlations in components of entangled electric fields
- The measurement on one entangled object affects the outcome of the measurement on the other distant object (non-local phenomena, yet no known violations of relativity)
- Very small possibility that experimental errors are the source of the measured non-locality

Can We Use QM Correlations for Communications?

- THEORETICAL RESTRICTIONS: current theory says we can't use just correlations in polarization of photons or electrons, and severely restricts other methods and FTL signals
- POSSIBILITIES: current theory may not prohibit use of non-local correlations in some approaches, for example if a classical channel also is used (quantum teleportation)

Use of Entangled States to Synchronize Satellite Clocks

- Entangled atoms are put in time invariant singlet state; atoms are then separated
- Do a "measurement" to end entanglement and start both atomic clocks operating

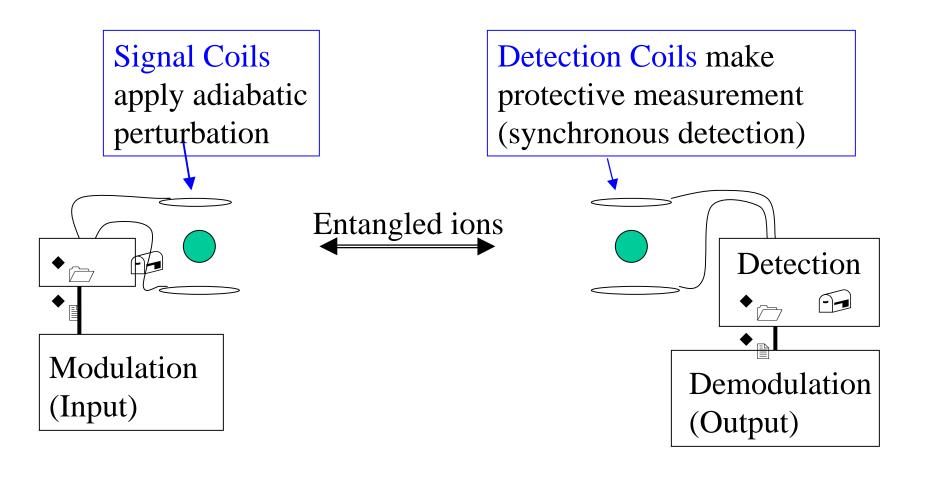
Method just proposed by researchers at JPL and Univ. of Bristol, England. Figure from New Scientist May 13, 2000. Ref: e-print quant-ph/0004105 at xxx.lanl.gov.

Technological Developments That May Enable Communications Using only Entangled States

- New techniques for generating and manipulating entangled atoms and ions
- More precise methods in EPR type experiments, indicating non-local correlations
- New measurement methods in quantum mechanics, such as "protective measurements"

Using Entangled Photons or Electrons for Communication I. The Attempt

- Assume you want to make a communication link using EPR pairs, labeled A and B
- Measuring the spin of particle A in the z-direction will put the spin of A in the z-direction and, by entanglement, will do the same for B
- Assume putting spin of A in z-direction transmits a "0" and in the y-direction transmits a "1"
- But does this communicate??


Using Entangled Photons or Electrons for Communication II. Technical Problems

- ANY spin measurement on B or any electron or photon puts the particle in a spin eigenstate and gives a binary (dichotomic) result (e.g. for electron + $\frac{1}{2}$ or $-\frac{1}{2}$)
- ANY spin measurement on B ends the entanglement with A so a second measurement gives no more information
- Not enough information is obtained from the measurement on B to determine the polarization axis used in the measurement on A (no internal standard)

Proposed Approach to Communication Using Entangled States

- Use long lived atomic or ionic states with the "right" kind of entanglement (e.g. continuous, boson…?)
- Avoid the use of a conventional measurement, which necessarily changes the state, ending the entanglement and any potential communications link.
- Perform an adiabatic perturbation ("input signal") on particle A which does not change the state or the entanglement (to first order in perturbation theory).
- Detect a correlated modulation in particle B using a "protective measurement," which does not change the state of the system or the entanglement. Ref. for protective measurement: Aharanov, Anandan, and Vaidman, Phys. Rev. A 47, p. 4616(1993)

Schematic of Communications System using Entangled Ions

EPR Experiments and The Causal Interpretation of QM by Bohm

- Causal model predicts same EPR measurements as QM but also gives a continuous description of the evolution of the system between measurements
- Causal model has a non-local quantum potential and torque
- In EPR experiment, in which one electron passes through a Stern-Gerlach magnetic field in the z-direction, the z-component of the spin of the other electron rotates continuously so the spin is always the opposite $(S^A_Z + S^B_Z = 0)$

Communications System Challenges and Requirements

- Need to maintain entanglement while particles are separated and minimize decoherence due to environmental effects (isolation)
- Need to develop modulation and detection methods that maintain the entanglement while perturbing one atom enough to be able to detect the correlated response in the other entangled particle
- Some methods may be impossible because they violate known or unknown laws of physics
- Atomic energy levels spaced to give a stable system and good bandwidth

REGIONS OF QUANTUM CORRELATIONS

STRENGTH OF PERTURBATION

SEPARATION "D" BETWEEN MEMBERS OF AN EPR PAIR
ANGSTROMS CM KM PARSEC

STRONG (COLLAPSE OF

(COLLAPSE OF WAVEFUNCTION)

MODERATE

WEAK

CORRELATION VERIFIED
EXPERIMENTALLY IN THIS REGION

CORRELATION
STRONGLY
EXPECTED IN
THIS REGION
(TO BE VERIFED
BY THEORY IN
PHASE I)

AREA TO RESEARCH (PHASE I/THEORY) (PHASE 2/EXPT.) DO
CORRELATIONS
EXIST IN THIS
REGION??

?????????????????????

NIAC REGION OF INTEREST

Proposed Approach

- Develop a model system based on recent ion manipulation research: ions in harmonic potentials
- Analyze effects of perturbations, and ordinary and protective measurements on entanglement
- Do theoretical study of the effects of entanglement as a function of separation between the ions
- Identify critical experiments (and theory) that would determine if communications using entanglement is possible or impossible

Thanks to NIAC for giving us the opportunity to do this research.